Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 14, Issue 6

Substrate Feeding Strategy Integrated with a Biomass Bayesian Estimator for a Biotechnological Process

Adriana Amicarelli
  • Corresponding author
  • Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste), J5400ARL, San Juan, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucía Quintero Montoya / Fernando di Sciascio
  • Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (oeste), J5400ARL, San Juan, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-01 | DOI: https://doi.org/10.1515/ijcre-2015-0182


This work proposes a substrate feeding strategy for a bioprocess integrated with a biomass estimator based in nonlinear filtering techniques. The performance of the proposed estimator and the substrate strategy are illustrated for the δ-endotoxin production of Bacillus thuringiensis (Bt) in batch and fed batch cultures. Nonlinear filtering techniques constitutes an adequate option as estimation tool because of the strongly nonlinear dynamics of this bioprocess and also due to nature of the uncertainties and perturbations that cannot be supposed Gaussians distributed. Biomass estimation is performed from substrate and dissolved oxygen. Substrate feeding strategy is intended to obtain high product concentration. Simulations results along with their experimental verifications demonstrate the acceptable performance of the proposed biomass estimator and the substrate feeding strategy.

Keywords: biomass estimation; nonlinear filtering; Bayes theory; fed batch process; substrate feeding strategy


  • 1. Amicarelli A., di Sciascio F., Toibero J., Alvarez H., 2010. Including dissolved oxygen dynamics into the Bt δ-endotoxins production process model and its application to process control. Brazilian Journal of Chemical Engineering 27, 41–62.Google Scholar

  • 2. Amicarelli A., di Sciascio F., Toibero J.M., Alvarez H., 2010. Including dissolved oxygen dynamics into the Bt ´-endotoxins production process model and its application to process control. Brazilian Journal of Chemical Engineering 27, 41–62.Google Scholar

  • 3. Amicarelli A., Quintero O., Sciascio F., 2014. Behavior comparison for biomass observers in batch processes. Asia‐Pacific Journal of Chemical Engineering 9, 81–92.Google Scholar

  • 4. Andrieu C., Doucet A., 2002. Particle filtering for partially observed Gaussian state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64, 827–36.Google Scholar

  • 5. Atehortúa P., Álvarez H., Orduz S., 2006. Comments on: “A Sporulation Kinetic Model for Batch Growth of B. thuringiensis”. The Canadian Journal of Chemical Engineering 84, 386–8.Google Scholar

  • 6. Atehortúa P., Álvarez H., Orduz S., 2007. Modeling of growth and sporulation of Bacillus thuringiensis in an intermittent fed batch culture with total cell retention. Bioprocess and Biosystems Engineering 30, 447–56.Google Scholar

  • 7. Bastin G., Dochain D., 1991. On-line estimation and adaptive control of bioreactors: Elsevier, Amsterdam, 1990 (ISBN 0-444-88430-0). xiv+ 379 pp. Price US $146.25/Dfl. 285.00. Analytica Chimica Acta 243, 324.Google Scholar

  • 8. Briers M., 2007. Improved Monte Carlo methods for state-space models. Cambridge, UK: University of Cambridge.

  • 9. Briers M., Doucet A., Singh SS., 2005. Sequential auxiliary particle belief propagation. Information Fusion, 2005 8th International Conference on2005. p. 8.

  • 10. Briers M., Maskell S.R., Wright R., 2003. A rao-blackwellised unscented Kalman filter. Info Fusion., 8–11.

  • 11. Chekhova E., Barton P., Gorak A., 2000. Optimal operation processes of discrete-continuous biochemical processes. Computers & Chemical Engineering 24, 1167–73.Google Scholar

  • 12. di Sciascio F., Amicarelli A.N., 2008. Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression. Computers & Chemical Engineering 32, 3264–73.Google Scholar

  • 13. Dochain D., 2003. State and parameter estimation in chemical and biochemical processes: a tutorial. Journal of Process Control 13, 801–18.Google Scholar

  • 14. Dondo R., Marqués D., 2002. Mass and energy balances as state-space models for aerobic batch fermentations. Latin American Applied Research 32, 195–204.Google Scholar

  • 15. Dorsey A.W., Lee J.H., 2003. Building inferential prediction models of batch processes using subspace identification. Journal of Process Control 13, 397–406.Google Scholar

  • 16. Doucet A., De Freitas N., Gordon N., 2001. An introduction to sequential Monte Carlo methods. Sequential Monte Carlo methods in practice. Berlin, Germany: Springer, pp. 3–14.Google Scholar

  • 17. Doucet A., Gordon N.J., Krishnamurthy V., 2001. Particle filters for state estimation of jump Markov linear systems. Signal Processing, IEEE Transactions on 49, 613–24.Google Scholar

  • 18. Gillespie D.T., 2002. The Chemical Langevin and Fokker–Planck Equations for the Reversible Isomerization Reaction†. The Journal of Physical Chemistry A 106, 5063–71.Google Scholar

  • 19. Grøn S., Bierdermann K., Emborg C., 1996. Production of proteinase A bySaccharomyces cerevesiae in a cell-recycling fermentation system: experiments and computer simulations. Appl Microbiol Biotechnol 44, 724–30.Google Scholar

  • 20. Guergachi A.A, Patry G.G., 2006. Constructing a model hierarchy with background knowledge for structural risk minimization: application to biological treatment of wastewater. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 36, 373–83.Google Scholar

  • 21. Guergachi A.A., 2001. Using statistical learning theory for modeling the uncertainty in business and engineering systems: a qualitative introduction. Systems, Man, and Cybernetics, 2001 IEEE International Conference on 2001. pp. 423–428, vol. 1.

  • 22. Klaas M., Briers M., De Freitas N., Doucet A., Maskell S., Lang D., 2006. Fast particle smoothing: If I had a million particles. Proceedings of the 23rd international conference on Machine learning. ACM2006. p. 481–8.

  • 23. Kurtz T.G., 1978. Strong approximation theorems for density dependent Markov chains. Stochastic Processes and their Applications 6, 223–40.Google Scholar

  • 24. Lange C., Kallianpur G., 1981. Stochastic filtering, theory, applications of mathematics 13, Berlin-Heidelberg-New York, Springer-Verlag 1980, XVI, 316 S., DM 59,50, US $ 35.10. ISBN 3-540-90445-X. ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 61, 602.Google Scholar

  • 25. Leal Ascencio R.R., Reynaga F., Herrera E., Gschaedler A., 2001. Artificial neural networks as a biomass virtual sensor for a batch process. Intelligent Control, 2001 (ISIC ’01) Proceedings of the 2001 IEEE International Symposium on 2001. p. 246–51.

  • 26. Leal R., Butler P., Lane P., Payne P., 1997. Data fusion and artificial neural networks for biomass estimation. IEEE Proceedings-Science, Measurement and Technology 144, 69–72.Google Scholar

  • 27. Mohd Ali J., Ha Hoang N., Hussain M.A., Dochain D., 2015. Review and classification of recent observers applied in chemical process systems. Computers & Chemical Engineering 76, 27–41.Google Scholar

  • 28. Nešić D., Teel A.R., 2004. A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. Automatic Control, IEEE Transactions on 49, 1103–22.Google Scholar

  • 29. Nešić D., Teel A.R., Kokotović P.V., 1999. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems & Control Letters 38, 259–70.Google Scholar

  • 30. Quintero O., Amicarelli A., di Sciascio F. Biomass Estimation in Batch Process through Particle Filters.

  • 31. Quintero O., Nieto J., Amicarelli A., Scaglia G., Luna T., di Sciascio F., 2009. Control engineering perspective of fermentation process from zymomonas mobilis: modeling, state estimation and control.

  • 32. Quintero O.L., Amicarelli A.A., Di Sciascio F., Scaglia G., 2008. State estimation in alcoholic continuous fermentation of Zymomonas mobilis using recursive bayesian filtering: A simulation approach. BioResources 3, 316–34.Google Scholar

  • 33. Quintero O.L., Amicarelli A.A., Scaglia G., di Sciascio F., 2009. Control based on numerical methods and recursive Bayesian estimation in a continuous alcoholic fermentation process. BioResources 4, 1372–95.Google Scholar

  • 34. Rivera D., Margaritis A., Lasa Hd., 1999. A sporulation kinetic model for batch growth of B. thuringiensis. Canadian Journal of Chemical Engineering 77, 903–10.Google Scholar

  • 35. Rossi V., Vila J.P., 2006. Bayesian multioutput feedforward neural networks comparison: a conjugate prior approach. Neural Networks, IEEE Transactions on 17, 35–47.Google Scholar

  • 36. Russell S.A., Robertson D.G., Lee J.H., Ogunnaike B.A., 2000. Model-based quality monitoring of batch and semi-batch processes. Journal of process control 10, 317–32.Google Scholar

  • 37. Silveira M.M., Molina M.A.B., 2005. Indirect estimation of Bacillus thuringiensis var. israelensis biomass concentration using oxygen balance data. Brazilian Journal of Chemical Engineering 22, 495–500.Google Scholar

  • 38. Sontag E.D., 1998. Mathematical control theory: deterministic finite dimensional systems, 2nd ed. New York: Springer-Verlag New York, Inc.

  • 39. Yuz J.I, Goodwin G.C., 2005. On sampled-data models for nonlinear systems. Automatic Control, IEEE Transactions on 50, 1477–89.Google Scholar

About the article

Published Online: 2016-04-01

Published in Print: 2016-12-01

Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 6, Pages 1187–1200, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0182.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Abdi Escalante-Sánchez, Josefina Barrera-Cortés, Héctor Mario Poggi-Varaldo, Teresa Ponce-Noyola, and Ieroham Solomon Baruch
Bioprocess and Biosystems Engineering, 2018
Oscar Camacho, Gustavo Scaglia, and O. Lucia Quintero
IFAC-PapersOnLine, 2017, Volume 50, Number 1, Page 3075

Comments (0)

Please log in or register to comment.
Log in