Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2016: 0.623
5-year IMPACT FACTOR: 0.761

CiteScore 2016: 0.58

SCImago Journal Rank (SJR) 2016: 0.224
Source Normalized Impact per Paper (SNIP) 2016: 0.297

Online
ISSN
1542-6580
See all formats and pricing
More options …

Dynamic Effectiveness Factor for Catalytic Particles with Anomalous Diffusion

Filiberto Martinez-Martinez
  • Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa Veracruz, México
  • Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, México D.F., Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Victor M. Rivera / Miguel A. Morales-Cabrera
  • Facultad de Ciencias Químicas, Universidad Veracruzana, Xalapa Veracruz, México
  • Facultad de Ciencias Químicas, Poza-Rica Veracruz, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eliseo Hernandez-Martinez
Published Online: 2016-08-10 | DOI: https://doi.org/10.1515/ijcre-2015-0221

Abstract

The effectiveness factor (EF) is a useful tool for the study of heterogeneous reaction systems, such as catalytic particles, where interactions of reaction-diffusion processes are involved. For simplicity, the study of EF is achieved on steady state operation (SSEF), but recent studies have suggested that EF can increase on dynamic operation conditions, especially when diffusive transport does not follow the Fick’s law. In this paper, a study about the effect of anomalous diffusion on the dynamic effectiveness factor (DEF) in catalytic particles is presented. For this, it is considered a generalized Cattaneo-type diffusion model described by differential equations of fractional order applied at rectangular, cylindrical and spherical geometries of the catalytic particles, which is analyzed in the frequency space by means the Fourier transform method. Numerical results, based on Bode and Nyquist diagrams, show the conditions and regions where the DEF values are largest than SSEF.

Keywords: dynamic effectiveness factor; anomalous diffusion; catalytic particles

References

  • 1. Alvarez-Ramírez, J., Ochoa-Tapia, J. A., Valdés-Parada, F. J., 2005a. Dynamic effectiveness factor for catalyst particles. The Journal of Physical Chemistry B 109(21), 11058–11064.Google Scholar

  • 2. Alvarez‐Ramírez, J., Valdés‐Parada, F. J., Ochoa‐Tapia, J. A., 2005b. Low‐order models for catalyst particles: A dynamic effectiveness factor approach. AIChE Journal 51(12), 3219–3230.Google Scholar

  • 3. Bidabehere, C. M., García, J. R., Sedran, U., 2015. Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles. Chemical Engineering Science 137, 293–300.Google Scholar

  • 4. Bouchaud, J. P., Georges, A., 1990. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports 195(4), 127–293.Google Scholar

  • 5. Compte, A., Metzler, R., 1997. The generalized Cattaneo equation for the description of anomalous transport processes. Journal of Physics A: Mathematical and General 30(21), 7277.Google Scholar

  • 6. Coppens, M. O., Froment, G. F., 1995. Diffusion and reaction in a fractal catalyst pore-I. Geometrical aspects. Chemical Engineering Science 50(6), 1013–1026.Google Scholar

  • 7. Fernandez-Anaya, G., Valdes-Parada, F. J., Alvarez-Ramirez, J., 2011. On generalized fractional Cattaneo’s equations. Physica A: Statistical Mechanics and Its Applications 390(23), 4198–4202.Google Scholar

  • 8. Froment, G. F., Bischoff, K. B., De Wilde, J., 2011. Chemical Reactor Analysis and Design (Vol. 2), Wiley, New York.Google Scholar

  • 9. Golestanian, R., 2009. Anomalous diffusion of symmetric and asymmetric active colloids. Physical Review Letters 102(18), 188305.Google Scholar

  • 10. Jordanovic, J., Jäger, S., Klapp, S. H., 2011. Crossover from normal to anomalous diffusion in systems of field-aligned dipolar particles. Physical Review Letters 106(3), 038301.Google Scholar

  • 11. Julcour, C., Le Lann, J. M., Wilhelm, A. M., Delmas, H., 1999. Dynamics of internal diffusion during the hydrogenation of 1, 5, 9-cyclododecatriene on Pd/Al 2 O 3. Catalysis Today 48(1), 147–159.Google Scholar

  • 12. Metzler, R., Klafter, J., 2000. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports 339(1), 1–77.Google Scholar

  • 13. Satterfield, C. N., 1970. Mass Transfer in Heterogeneous Catalysis, The MIT Press, Cambridge, MA.Google Scholar

  • 14. Valdes-Parada, F. J., Ochoa-Tapia, J. A., Alvarez-Ramirez, J., 2006. Effective medium equation for fractional Cattaneo’s diffusion and heterogeneous reaction in disordered porous media. Physica A: Statistical Mechanics and Its Applications 369(2), 318–328.Google Scholar

  • 15. Willaert, R. G., Baron, G. V., 1994. Effectiveness factor calculation for immobilised growing cell systems. Biotechnology Techniques 8(10), 695–700.Google Scholar

About the article

Published Online: 2016-08-10

Published in Print: 2016-12-01


Citation Information: International Journal of Chemical Reactor Engineering, Volume 14, Issue 6, Pages 1235–1240, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0221.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alberto Hernandez Aguirre, Miguel A. Morales Cabrera, Epifanio Morales Zarate, Victor M Rivera, Hector Puebla, and Eliseo Hernandez Martinez
International Journal of Chemical Reactor Engineering, 2017, Volume 0, Number 0

Comments (0)

Please log in or register to comment.
Log in