Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 15, Issue 2


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Aqueous Phase Biosorption of Pb(II), Cu(II), and Cd(II) onto Cabbage Leaves Powder

Firas Hashim Kamar
  • Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, Romania
  • Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aurelia Cristina Nechifor
  • Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gheorghe Nechifor
  • Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tariq J. Al-Musawi / Asem Hassan Mohammed
Published Online: 2016-08-16 | DOI: https://doi.org/10.1515/ijcre-2015-0178


In this study, the biosorption of lead (Pb(II)), copper (Cu(II)), and cadmium (Cd(II)) ions from aqueous solution using waste of cabbage leaves powder (CLP) was investigated as a function of pH, shaking time, initial metal concentration, and biosorbent dose. The maximum removal efficiency at optimum condition in single biosorption system was 95.67, 92.42, and 88.92 % for Pb(II), Cu(II), and Cd(II) ions, respectively. These values reduced in ternary systems in the same sequence. Langmuir and extended Langmuir isotherm models were found to be the best fit of the isotherm data for single and ternary biosorption systems, respectively. The kinetic data of the three metals were better fit by the pseudo-second-order model with higher coefficient of determination and more closely predicted uptake. In addition, the results showed that the intraparticle diffusion was the dominating mechanism. Thermodynamic study showed that the biosorption of Pb(II), Cu(II), and Cd(II) onto CLP was a chemical reaction which was exothermic in nature. Finally, SEM image shows that CLP has a number of heterogeneous small pores while the Fourier transform infrared (FTIR) spectroscopic analysis showed that the carboxyl, amine, and hydroxyl groups are the major groups that are responsible for the biosorption process.

Keywords: biosorption; cabbage leaves; metals; isotherm; kinetics; thermodynamics


  • Abu Al-Rub, F. A., Kandah, M., Al-Dabaybeh, N., 2003. Competitive adsorption of nickel and cadmium on sheep monure waste, experimental and prediction studies. Separation Science and Technology 38, 483–497.Google Scholar

  • Allen, S. J., Brown, P. A., 1995. Isotherm analyses for single component and multi-component metal sorption onto lignite. Journal of Chemical Technology and Biotechnology 62, 17–24.Google Scholar

  • Alley, E. R., 2006. Water Quality Control Handbook, 2nd ed., McGraw-Hill Companies, Inc.

  • Amin, F., Farah, N., Talpur, F. N., Aamna Balouch, A., Surhio, M. A., Bhutto, M. A., 2015. Biosorption of fluoride from aqueous solution by white—rot fungus pleurotus eryngii ATCC 90888. Environmental Nanotechnology, Monitoring & Management 3, 30–37.Google Scholar

  • Anayurt, R. A., Sari, A., Tuzen, M., 2009. Equilibrium, thermodynamic and kinetic studies on biosorption of pb(II) and cd(II) from aqueous solution by macrofungus (lactarius scrobiculatus) biomass. Chemical Engineering Journal 151, 255–261.Google Scholar

  • Anwar, J., Shafique, U., Waheeduz, Z., Salman, M., Dar, A., Anwar, S., 2010. Removal of pb(II) and cd(II) from water by adsorption on peels of banana. Bioresource Technology 101, 1752–1755.Google Scholar

  • Barros, L. M., Macedo, G. R., Duarte, M. L., Silva, E. P., Lobato, A. K., 2003. Biosorption of cd using the fungus A. Niger. Brazilian Journal of Chemical Engineering 20, 229–239.Google Scholar

  • Boparai, H. K., Joseph, M., O’Carroll, D. M., 2010. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials DOI: .CrossrefGoogle Scholar

  • Caroline, B., Meuris, G., Eric, G., 2014. Chromium biosorption using the residue of alginate extraction from sargassum filipendula. Chemical Engineering Journal 237, 362–371.Google Scholar

  • Chen, J., Hu, Z., Ji, R., 2012. Removal of carbofuran from aqueous solution by orange peel. Desalination and Water Treatment 49, 106–114.Google Scholar

  • Chuah, T. G., Jumasiah, A., Azmi, I., Katayon, S., 2005. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: An overview. Desalination 175, 305–316.Google Scholar

  • Cochrane, E. L., Lu, S., Gibb, S. W., Villaescusa, I., 2006. A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. Journal of Hazardous Materials 137, 198–206.Google Scholar

  • Davis, A., Volesky, B., Mucci, A., 2003. A review of the biochemisty of heavy metals biosorption by brown algae. Water Research 37, 4311–4330.Google Scholar

  • Diniz, V., Weber, M. E., Volesky, B., Naja, G., 2008. Column biosorption of lanthanum and europium by sargassum. Water Research 47, 363–371.Google Scholar

  • Doris, K. L., Yu, B., Zhang, Y., Shukla, A., Shukla, S. S., 2000. The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper. Journal of Hazardous Materials 80, 33–42.Google Scholar

  • Elwakeel, K. Z., Atia, A. A., Guibal, E., 2014. Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin. Bioresource Technology 160, 107–114.Google Scholar

  • Feng, N., Guo, X., Liang, S., Zhu, Y., Liu, J., 2011. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials 185, 49–54.Google Scholar

  • Figueria, M. M., Volesky, B., Ciminelli, V. S. T., Roddlick, F. A., 2000. Biosorption of metals in brown seaweed biomass. Water Research 34, 196–204.Google Scholar

  • Foo, K. Y., Hammed, B. H., 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156, 2–10.Google Scholar

  • Freundlich, H. M. F., 1906. Over the adsorption in solution. Journal of Physical Chemistry 57, 385–407.Google Scholar

  • Goyer, R. A., 2001. Toxic effects of metals, in: Klaassen C. D. (Eds.), Casarett & Doull’s Toxicology: The Basic Science of Poisons, 6th ed. McGraw-Hill, New York, pp. 817.Google Scholar

  • Gupta, S. S., Bhattacharyya, K. G., 2009. Treatment of water contaminated with pb (II) and cd (II) by adsorption on koalinite, montmorillonite and their acid-activated forms. Indian Journal of Chemical Technology 16, 457–470.Google Scholar

  • Hanan, E. O., Rehman, K. B., Hanan, F. A., 2010. Using of some agricultural by-products in the removal of some heavy metals from industrial wastewater. Journal of Phytology 2, 51–62.Google Scholar

  • Ho, Y. S., McKay, G., 1999. Pseudo-second-order model for sorption processes. Process Biochemistry 34, 451–465.Google Scholar

  • Ho, Y.-S., Porter, J. F., McKay, G., 2002. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air, and Soil Pollution 141, 1–33.Google Scholar

  • Holan, Z. R., Volesky, B., Prasetyo, I., 1993. Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioengineering 41, 819–825.Google Scholar

  • Hossain, M. A., Ngo, H. H., Guo, W. S., Setiadi, T., 2012. Adsorption and desorption of copper(II) ions onto garden grass. Journal of Bioresource Technology 121, 386–395.Google Scholar

  • Huifen, L., Yanbing, L. W. G., Jiali, C., Lin, X., Junkang, G., 2010. Biosorption of zn(II) by live and dead cells of streptomyces ciscaucasicus strain CCNWHX 72–14. Journal of Hazardous Materials 179, 151–159.Google Scholar

  • Imamoglu, M., Tekir, O., 2008. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228, 108–113.Google Scholar

  • Issabayeva, G., Aroua, M. K., Sulaiman, N. M., 2010. Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solution. Desalination 262, 94–98.Google Scholar

  • Itodo, A. U., Abdulrahman, F. W., Hassan, L. G., Maigandi, S. A., Itodo, H. U., 2010. Intraparticle diffusion and intraparticulate diffusivities of herbicide on derived activated carbon. Researcher 2, 74–86.Google Scholar

  • Jossens, L. J., Prausnitz, M., Frits, W., Schlunder, E. U., Myers, A. L., 1978. Thermodynamics of multi-solute adsorption from dilute aqueous solution. Chemical Engineering Science 33, 1097–1106.Google Scholar

  • Kamar, F. H., Nechifor, A. C., Mohammed, A. A., Albu, C., Craciun, M. E., 2015. Removal of lead and cadmium ions from aqueous solution using walnut shells as low-cost adsorbent materials. Revista de Chimie 66, 615–620.Google Scholar

  • Krishnan, K. A., Anirudhan, T. S., 2003. Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water SA 29, 147–156.Google Scholar

  • Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Veteskapsakademiens Handlingar 24, 1–39.Google Scholar

  • Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40, 1361–1403.Google Scholar

  • Lawrence, K., Wang, J. T., Stephen, T. T., Yung-Tse, H., 2010. Handbook of Environmental Engineering, Environmental Bioengineering, Springer, New York.Google Scholar

  • Liu, Y., 2009. Is the free energy change of adsorption correctly calculated?. Journal of Chemical & Engineering Data 54, 1981–1985.Google Scholar

  • Lokhan, K. H., 2006. Competitive adsorption of two dissolved organic onto activated carbon, III. Chemical Engineering Science 36, 743–757.Google Scholar

  • Lu, S., Gibb, S. W., 2007. Copper removal form wastewater using spent-grain as biosorbent. Bioresource Technology 99, 1509–1517.Google Scholar

  • Mohammed, A., Abed, F., Al-Musawi, T., 2014. Biosorption of pb(II) from aqueous solution by spent black tea leaves and separation by flotation. Desalination and Water Treatment. DOI: .CrossrefGoogle Scholar

  • Mohammed, A. A., Ebrahim, S. E., Alwared, A. I., 2013. Flotation and sorptive-flotation methods for removal of lead ions from wastewater using SDS as surfactant and barley husk as biosorbent. Journal of Chemistry. doi.org/10.1155/2013/413948.CrossrefGoogle Scholar

  • Palanisamy, K., Nomanbhay, S. M., 2005. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology 25, 212–220.Google Scholar

  • Quintelas, C., Fernandes, B., Castro, J., Figueiredo, H., Tavares, T., 2008. Biosorption of cr(VI) by three different bacterial species supported on granular activated carbon—a comparative study. Journal of Hazardous Materials 153, 799–809.Google Scholar

  • Radnia, H., Ghoreyshi, A. A., Younesi, H., Najafpour, G. D., 2012. Adsorption of fe(II) ions from aqueous phase by chitosan adsorbent: Equilibrium, kinetic, and thermodynamic studies. Desalination and Water Treatment 50, 348–359.Google Scholar

  • Rao, M., Parwate, A. V., Bhole, A. G., 2002. Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Management 22, 821.Google Scholar

  • Reddy, D. H. K., Lee, S. M., 2013. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid and Interface Science 201–202, 68–93.Google Scholar

  • Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., Lee, S. M., 2012. Optimization of cd(II), cu(II) and ni(II) biosorption by chemically modified moringa oleifera leaves powder. Carbohydrate Polymers 88, 1077–1086.Google Scholar

  • Reddy, D. H. K., Yun, Y.-S., 2016. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coordination Chemistry Reviews 315, 90–111.Google Scholar

  • Romera, E., Gonzalez, F., Ballester, A., Blazquez, M. J., 2007. Comparative study of heavy metals using different types of algae. Bioresource Technology 98, 3344–3353.Google Scholar

  • Sari, A., Mendil, D., Tuzen, M., Soylak, M., 2008. Biosorption of cd(II) and cr(III) from aqueous solution by moss (hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal 144, 1–9.Google Scholar

  • Sari, A., Tuzen, M., 2008. Biosorption of cadmium (II) from aqueous solution by red algae (ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials 157, 448–454.Google Scholar

  • Sari, A., Tuzen, M., 2009. Kinetic and equilibrium studies of biosorption of pb(II) and cd(II) from aqueous solution by macrofungus (amanita rubescens) biomass. Journal of Hazardous Materials 164, 1004–1011.Google Scholar

  • Sulaymon, A. H., Mohammed, A. A., Al-Musawi, T. J., 2013. Removal of lead, cadmium, copper, and arsenic ions using biosorption: Equilibrium and kinetic studies. Desalination and Water Treatment 51, 4424–4434.Google Scholar

  • Sulaymon, A. H., Mohammed, A. A., Al-Musawi, T. J., 2014. Comparative study of removal of cadmium (II) and chromium (III) ions from aqueous solution using low-cost biosorbent. International Journal of Chemical Reactor Engineering 12, 1–10.Google Scholar

  • Trifoni, F. M., Beolchini, F., Esposito, A., Toro, L., Veglio, F., 2001. Equilibrium biosorption studies in single and multi-metal systems. Process Biochemistry 37, 115–124.Google Scholar

  • Tuzun, I., Bayramoglu, G., Alcin, Y. E., Basaran, G., Celik, G., Arica, M. Y., 2005. Equilibrium and kinetic studies on biosorption of hg(II), cd(II) and pb(II) ions onto microalgae chlamydomonas reinhardtii. Journal of Environmental Management 77, 85–92.Google Scholar

  • Ulmanu, M., Maranon, E., Fernandez, Y., Castrillon, L., Anger, I., Dumitriu, D., 2003. Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water, Air, and Soil Pollution 142, 357–373.Google Scholar

  • Uluozlu, O. D., Sari, A., Tuzen, M., Soylak, M., 2008. Biosorption of pb(II) and cr(III) from aqueous solution by lichen (parmelina tiliaceae) biomass. Bioresource Technology 99, 2972–2980.Google Scholar

  • Vincent, T., Taulemesse, J.-M., Dauvergne, A., Chanut, T., Flaviano, T., Guibal, E., 2014. Thallium(I) sorption using Prussian blue immobilized in alginate capsules. Carbohydrate Polymers 90, 517–526.Google Scholar

  • Walter, J., Weber, J. R., 1972. Physicochemical Process for Water Quality Control, Wiley-Interscience, New York.Google Scholar

  • Wang, J., Chen, C., 2009. Biosorbents for heavy metals removal and their future. Biotechnology Advances 27, 195–226.Google Scholar

  • Weber, W. J., McGinley, J. P. M., Katz, L. E., 1991. Sorption phenomena in subsurface systems: Concepts, models, and effects on contaminant fate and transport. Water Research 25, 499–528.Google Scholar

  • WHO: World Health Organization, 1984. Guidelines for Drinking Water Quality, Recommendations, 1st ed., vol. 1, World Health Organization, Geneva.Google Scholar

  • Wu, F. C., Tseng, R. L., Juang, R. S., 2009. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal 153, 1–8.Google Scholar

  • Yu, J., Neretnieks, I., 1990. Single-component and multicomponent adsorption equilibria on activated carbon of methylcyclohexane, toluene and isobutyl methyl ketone. I&EC Research 29, 220–231.Google Scholar

  • Zuorro, A., Lavecchia, R., 2010. Adsorption of pb (II) on spent leaves of green and black tea. American Journal of Applied Sciences 7, 153–159.CrossrefGoogle Scholar

About the article

Published Online: 2016-08-16

Published in Print: 2017-04-01

Citation Information: International Journal of Chemical Reactor Engineering, Volume 15, Issue 2, 20150178, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2015-0178.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ioannis Anastopoulos, Artis Robalds, Hai Nguyen Tran, Dimitris Mitrogiannis, Dimitrios A. Giannakoudakis, Ahmad Hosseini-Bandegharaei, and Guilherme L. Dotto
Environmental Chemistry Letters, 2018
Ilaria Colzi, Lorenzo Lastrucci, Mattia Rangoni, Andrea Coppi, and Cristina Gonnelli
Journal of Environmental Management, 2018, Volume 213, Page 320

Comments (0)

Please log in or register to comment.
Log in