Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 15, Issue 4

Issues

Volume 17 (2019)

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Hydrodynamics and Mass Transfer Simulation in Airlift Bioreactor with Settler using Computational Fluid Dynamics

Oscar M. Hernández-Calderón
  • Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Blvd. Universitarios, Ciudad Universitaria, CP 80013, Culiacán, Sinaloa, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcos D. González-Llanes
  • Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Av. Tecnológico y Antonio García Cubas S/N, CP 38010, Celaya, Guanajuato, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erika Y. Rios-Iribe
  • Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Blvd. Universitarios, Ciudad Universitaria, CP 80013, Culiacán, Sinaloa, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio A. Jiménez-Lam
  • Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Blvd. Universitarios, Ciudad Universitaria, CP 80013, Culiacán, Sinaloa, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ma.del Carmen Chavez-Parga
  • Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mújica s/n Col. Felicitas del Río, CP 58060, Morelia Michoacán, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eleazar M. Escamilla-Silva
  • Corresponding author
  • Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Av. Tecnológico y Antonio García Cubas S/N, CP 38010, Celaya, Guanajuato, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-13 | DOI: https://doi.org/10.1515/ijcre-2016-0173

Abstract

In this work, the effect of inlet-gas superficial velocity over the circulation liquid velocity, gas holdup and mass transfer, from an airlift bioreactor with settler were studied by Computational Fluid Dynamics (CFD) modeling and contrasted with experimental results. Multiphase mixture model and κ-ε turbulence model were used to describe the two phases gas-liquid flow pattern in airlift bioreactor. The hydrodynamic parameters such as liquid circulation velocity and gas holdup were computed by solving the governing equations of continuity, moment and turbulence transport using the finite volume method. Global mass transfer coefficient was evaluated through the Higbie’s penetration theory and the two-phase fluid dynamic theory. Comparison between our numerical data and experimental data previously reported in the literature was done. Numerical and experimental data were very close, and the differences found were discussed in terms of the limitations of this study.

This article offers supplementary material which is provided at the end of the article.

Keywords: airlift bioreactor with settler; Computational Fluid Dynamics; hydrodynamic; mass transfer coefficient

References

  • Abashar, Mohamed E., Udi Narsingh, Andre E. Rouillard, and Robin Judd. 1998. “Hydrodynamic flow regimes, gas holdup, and liquid circulation in airlift reactors.” Industrial & Engineering Chemistry Research 37 (4): 1251–1259. DOI:.CrossrefGoogle Scholar

  • Altway, A., H. Setyawan, Margono, and S. Winardi. 2001. “Effect of particle size on simulation of three-dimensional solid dispersion in stirred tank.” Chemical Engineering Research and Design 79 (8): 1011–1016. DOI:.CrossrefGoogle Scholar

  • Behin, J. 2010. “Modeling of modified airlift loop reactor with a concentric double-draft tube.” Chemical Engineering Research and Design 88 (8): 919–927. DOI:.CrossrefGoogle Scholar

  • Bello, R Ade, Campbell W. Robinson, and Murray Moo‐Young. 1984. “Liquid circulation and mixing characteristics of airlift contactors.” The Canadian Journal of Chemical Engineering 62 (5): 573–577. DOI:.CrossrefGoogle Scholar

  • Blažej, M., M. Kiša, and J. Markoš. 2004. “Scale influence on the hydrodynamics of an internal loop airlift reactor.” Chemical Engineering and Processing: Process Intensification 43 (12): 1519–1527. DOI:.CrossrefGoogle Scholar

  • Cerri, M. O., and A. C. Badino. 2010. “Oxygen transfer in three scales of concentric tube airlift bioreactors.” Biochemical Engineering Journal 51 (1–2): 40–47. DOI:.CrossrefGoogle Scholar

  • Chavez-Parga, M. C., O. Gonzalez-Ortega, M. L. X. Negrete-Rodriguez, L. Medina-Torres, and Eleazar M. Escamilla Silva. 2007. “Hydrodynamics, mass transfer and rheological studies of gibberellic acid production in an airlift bioreactor.” World Journal of Microbiology and Biotechnology 23 (5): 615–623. DOI:.CrossrefGoogle Scholar

  • Chen, P, M.P. Duduković, and J Sanyal. 2005. “Three‐dimensional simulation of bubble column flows with bubble coalescence and breakup.” AIChE Journal 51 (3): 696–712. DOI:.CrossrefGoogle Scholar

  • Chen, P, J Sanyal, and M.P. Dudukovic. 2004. “CFD modeling of bubble columns flows: Implementation of population balance.” Chemical Engineering Science 59 (22): 5201–5207. DOI:.CrossrefGoogle Scholar

  • Chisti, M. Y., B. Halard, and M. Moo-Young. 1988. “Liquid circulation in airlift reactors.” Chemical Engineering Science 43 (3): 451–457. DOI:.CrossrefGoogle Scholar

  • Chisti, Y. 1989. Airlift Bioreactors. Essex, England: Elsevier Applied Science.Google Scholar

  • Cockx, A., Z. Do-Quang, J. M. Audic, A. Liné, and M. Roustan. 2001. “Global and local mass transfer coefficients in waste water treatment process by computational fluid dynamics.” Chemical Engineering and Processing: Process Intensification 40 (2): 187–194. DOI:.CrossrefGoogle Scholar

  • Cozma, P., and M Gavrilescu. 2012. “Airlift reactors: Applications in wastewater treatment.” Environmental Engineering and Management Journal 11: 1505–1515.Google Scholar

  • Davidson, P. A.. 2004. Turbulence: An Introduction for Scientists and Engineers. New York, New York: Oxford University Press.Google Scholar

  • Dussap, G., and J. B. Gros. 1982. “Energy consumption and interfacial mass transfer area in an air-lift fermentor.” The Chemical Engineering Journal 25 (2): 151–162. DOI:.CrossrefGoogle Scholar

  • Fadavi, Ali, and Yusuf Chisti. 2005. “Gas–liquid mass transfer in a novel forced circulation loop reactor.” Chemical Engineering Journal 112 (1–3): 73–80. DOI:.CrossrefGoogle Scholar

  • Freitas, Carla, Maria Fialová, Jindrich Zahradnik, and José A. Teixeira. 2000. “Hydrodynamics of a three-phase external-loop airlift bioreactor.” Chemical Engineering Science 55 (21): 4961–4972. DOI:.CrossrefGoogle Scholar

  • Fu, C. C., L. S. Fan, and W. T. Wu. 2007. “Flow regime transitions in an internal-loop airlift reactor.” Chemical Engineering & Technology 30 (8): 1077–1082. DOI:.CrossrefGoogle Scholar

  • Gavrilescu, M., and R. V. Roman. 1993. “Investigation of the bacitracin biosynthesis in an airlift bioreactor.” Acta Biotechnologica 13 (2): 161–175. DOI:.CrossrefGoogle Scholar

  • Gavrilescu, M., and R. V. Roman. 1995. “Cultivation of a filamentous mould in an airlift bioreactor.” Acta Biotechnologica 15 (4): 323–335. DOI:.CrossrefGoogle Scholar

  • Gavrilescu, M., and R. Z. Tudose. 1995. “Study of the liquid circulation velocity in external-loop airlift bioreactors.” Bioprocess Engineering 14 (1): 33–39. DOI:.CrossrefGoogle Scholar

  • Gavrilescu, M., and R. Z. Tudose. 1998a. “Concentric-tube airlift bioreactors.” Bioprocess Engineering 19 (2): 103–109. DOI:.CrossrefGoogle Scholar

  • Gavrilescu, M., and R. Z. Tudose. 1998b. “Modelling of liquid circulation velocity in concentric-tube airlift reactors.” Chemical Engineering Journal 69 (2): 85–91. DOI:.CrossrefGoogle Scholar

  • Giovannettone, J. P., and J. S. Gulliver. 2008. “Gas transfer and liquid dispersion inside a deep airlift reactor.” AIChE Journal 54 (4): 850–861. DOI:.CrossrefGoogle Scholar

  • Godbole, S. P., A. Schumpe, Y. T. Shah, and N. L. Carr. 1984. “Hydrodynamics and mass transfer in non-Newtonian solutions in a bubble column.” AIChE Journal 30 (2): 213–220. DOI:.CrossrefGoogle Scholar

  • Grima, Molina, Yusuf Chisti Emilio, and Moo-Young. Murray. 1997. “Characterization of shear rates in airlift bioreactors for animal cell culture.” Journal of Biotechnology 54 (3): 195–210. DOI:.CrossrefGoogle Scholar

  • Heijnen, J. J., J. Hols, R. G. J. M. Van Der Lans, H. L. J. M. Van Leeuwen, A. Mulder, and R. Weltevrede. 1997. “A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime.” Chemical Engineering Science 52 (15): 2527–2540. DOI:.CrossrefGoogle Scholar

  • Hekmat, Atefeh, Abtin Ebadi Amooghin, and Mostafa Keshavarz Moraveji. 2010. “CFD simulation of gas–liquid flow behaviour in an air-lift reactor: Determination of the optimum distance of the draft tube.” Simulation Modelling Practice and Theory 18 (7): 927–945. DOI:.CrossrefGoogle Scholar

  • Liu, S. X., and S. W. Hermanowicz. 2008. “Empirical correlation of volumetric mass transfer coefficient for a rectangular internal-loop airlift bioreactor.” Journal of Environmental Engineering and Science 7 (4): 411–415. DOI:.CrossrefGoogle Scholar

  • Higbie, R. 1935. “The rate of absorption of a pure gas into a still liquid during short periods of exposure.” Transactions of the American Institute of Chemical Engineers 35: 365–389.Google Scholar

  • Hossain, Alamgir, Jamal Naser, and MonzurAlam Imteaz. 2011. “CFD investigation of particle deposition in a horizontal looped turbulent pipe flow.” Environmental Modeling & Assessment 16 (4): 359–367. DOI:.CrossrefGoogle Scholar

  • Huang, Qingshan, Chao Yang, Yu Gengzhi, and Zai-Sha Mao. 2010. “CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model.” Chemical Engineering Science 65 (20): 5527–5536. DOI:.CrossrefGoogle Scholar

  • Kadic, Enes, and Theodore J. Heindel. 2014. An Introduction to Bioreactor Hydrodynamics and Gas-Liquid Mass Transfer. Hoboken, New Jersey: John Wiley & Sons .Google Scholar

  • Kahar, Prihardi, Kengo Kobayashi, Toshiharu Iwata, Jun Hiraki, Mami Kojima, and Mitsuyasu Okabe. 2002. “Production of ε-polylysine in an airlift bioreactor (ABR).” Journal of Bioscience and Bioengineering 93 (3): 274–280. DOI:.CrossrefGoogle Scholar

  • Kilonzo, Peter M., M. A. Argyrios Margaritis, Juntang Yu Bergougnou, and Ye. Qin. 2007. “Effects of geometrical design on hydrodynamic and mass transfer characteristics of a rectangular-column airlift bioreactor.” Biochemical Engineering Journal 34 (3): 279–288. DOI:.CrossrefGoogle Scholar

  • Klein, J., S. Godo, and J. A. Teixeira. 2006. “Motion of a magnetic flow follower in two-phase flow-application to the study of airlift reactor hydrodynamics.” Journal of Chemical Technology and Biotechnology 81: 1778–1786. DOI:.CrossrefGoogle Scholar

  • Klein, Jaroslav, António A. João Maia, Lucília Domingues Vicente, José A. Teixeira, and Martin Juras̆C̆Ík. 2005. “Relationships between hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-density airlift bioreactor.” Biotechnology and Bioengineering 89 (4): 393–399. DOI:.CrossrefGoogle Scholar

  • Launder, B. E., and D. B. Spalding. 1972. Lectures in Mathematical Models of Turbulence. London: Academic Press.Google Scholar

  • Lestinsky, P., M. Vecer, P. Vayrynen, and K. Wichterle. 2015. “The effect of the draft tube geometry on mixing in a reactor with an internal circulation loop–A CFD simulation.” Chemical Engineering and Processing: Process Intensification 94: 29–34. . DOI:.CrossrefGoogle Scholar

  • Li, Chao, Jian-Ye Xia, Ju Chu, Yong-Hong Wang, Ying-Ping Zhuang, and Si-Liang Zhang. 2013. “CFD analysis of the turbulent flow in baffled shake flasks.” Biochemical Engineering Journal 70 (0): 140–150. DOI:.CrossrefGoogle Scholar

  • Lima-Neto, I. E., D. Z. Zhu, and N. Rajaratnam. 2008. “Air injection in water with different nozzles.” ASCE Journal of Environmental Engineering 134 (4): 283–29. DOI:.CrossrefGoogle Scholar

  • Luo, Hu-Ping, and Muthanna H. Al-Dahhan. 2011. “Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor.” Chemical Engineering Science 66 (5): 907–923. DOI:.CrossrefGoogle Scholar

  • Mahmood, KH AL, Stephen J Wilkinson, and William B Zimmerman. 2015. “Airlift bioreactor for biological applications with microbubble mediated transport processes.” Chemical Engineering Science 137: 243–253. DOI:.CrossrefGoogle Scholar

  • Malfait, J. L., D. J. Wilcox, D. G. Mercer, and L. D. Barker. 1981. “Cultivation of a filamentous mold in a glass pilot-scale airlift fermentor.” Biotechnology and Bioengineering 23 (4): 863–877. DOI:.CrossrefGoogle Scholar

  • Manninen, M., V. Taivassalo, and S. Kallio. 1996. On the Mixture Model for Multiphase Flow. Vol. 288. Finland: VTT Publications.Google Scholar

  • Mendoza-Martínez, A. M., and E. M. Escamilla-Silva. 2013. “Airlift Bioreactors: Hydrodynamics and Rheology Application to Secondary Metabolites Production.” In Mass Transfer-Advances in Sustainable Energy and Environment Oriented Numerical Modeling., edited by H. Nakajima, 387–429. Rijeka: InTech.Google Scholar

  • Merchuk, J., and M. Glu. 2002. Bioreactors, Air-lift Reactors. Encyclopedia of Bioprocess Technology.. New York City, New York: John Wiley & Sons. . DOI:.CrossrefGoogle Scholar

  • Min’kov, L. L., and J. H. Dueck. 2012. “Numerical modeling of a nonmonotonic separation hydrocyclone curve.” Journal of Engineering Physics and Thermophysics 85 (6): 1317–1326. DOI:.CrossrefGoogle Scholar

  • Moraveji, Mostafa Keshavarz, Mohamad Morovati Pasand, Reza Davarnejad, and Yusuf Chisti. 2012. “Effects of surfactants on hydrodynamics and mass transfer in a split-cylinder airlift reactor.” The Canadian Journal of Chemical Engineering 90 (1): 93–99. DOI:.CrossrefGoogle Scholar

  • Narasimha, M., Matthew Brennan, and P.N. Holtham. 2007. “A review of CFD modelling for performance predictions of hydrocyclone.” Engineering Applications of Computational Fluid Mechanics 1 (2): 109–125. DOI:.CrossrefGoogle Scholar

  • Noroozi, Sooran, and Seyed Hassan Hashemabadi. 2009. “CFD simulation of inlet design effect on deoiling hydrocyclone separation efficiency.” Chemical Engineering & Technology 32 (12): 1885–1893. DOI:.CrossrefGoogle Scholar

  • Rengel, Ana, Assaad Zoughaib, Dominique Dron, and Denis Clodic. 2012. “Hydrodynamic study of an internal airlift reactor for microalgae culture.” Applied Microbiology and Biotechnology 93 (1): 117–129. DOI:.CrossrefGoogle Scholar

  • Rostami, K., W.G. Fu, and M. Moo-Young. 2005. “Mass transfer studies in stirred airlift reactor.” Chemical Engineering Communications 92 (1): 108–124. DOI:.CrossrefGoogle Scholar

  • Roy, S., M.T. Dhotre, and J.B. Joshi. 2006 (8). “CFD Simulation of Flow and Axial Dispersion in External Loop Airlift Reactor.” Chemical Engineering Research and Design 84 (8): 677–690. DOI:.CrossrefGoogle Scholar

  • Schiller, L., and Z. Naumann. 1935. “A drag coefficient correlation.” Zeitschrift des Vereins Deutscher Ingenieure 77: 318–320.Google Scholar

  • Shah, Y. T., B. G. Kelkar, S. P. Godbole, and W. D. Deckwer. 1982. “Design parameters estimations for bubble column reactors.” Aiche Journal 28 (3): 353–379. DOI:.CrossrefGoogle Scholar

  • Siegel, M. H., and C. W. Robinson. 1992. “Application of airlift gas-liquid-solid reactors in biotechnology.” Chemical Engineering Science 47 (13–14): 3215–3229. DOI:.CrossrefGoogle Scholar

  • Sikula, I., M. Juraščík, and J. Markoš. 2006. “Modelling of enzymatic reaction in an internal loop airlift reactor.” Chemical Papers 60 (6): 446–453. DOI:.CrossrefGoogle Scholar

  • Sikula, Ivan, and Markoš. Jozef. 2008. “Modeling of enzymatic reaction in an airlift reactor using an axial dispersion model.” Chemical Papers 62 (1): 10–17. DOI:.CrossrefGoogle Scholar

  • Sikula, Ivan, Martin Juraščík, and Markoš. Jozef. 2007. “Modeling of fermentation in an internal loop airlift bioreactor.” Chemical Engineering Science 62 (18–20): 5216–5221. DOI:.CrossrefGoogle Scholar

  • Šimčík, Miroslav, A. Mota, M. Růžička, A. Vicente, and J. Teixeira. 2011. “CFD Simulation and Experimental Measurement of Gas Holdup and Liquid Interstitial Velocity in Internal Loop Airlift Reactor.” Chemical Engineering Science 66 (14): 3268–3279. DOI:.CrossrefGoogle Scholar

  • Sivaguru, K., K. M. Meera Sheriffabegum, and N. Anantharaman. 2009. “Hydrodynamic studies on three-phase fluidized bed using CFD analysis.” Chemical Engineering Journal 155 (1–2): 207–214. DOI:.CrossrefGoogle Scholar

  • Soga, C., and C. Rehmann. 2004. “Dissipation of turbulent kinetic energy near a bubble plume.” Journal of Hydraulic Engineering 130 (5): 441–449. DOI:.CrossrefGoogle Scholar

  • Talvy, Samuel, Arnaud Cockx, and Liné. Alain. 2007. “Modeling hydrodynamics of gas–liquid airlift reactor.” AIChE Journal 53 (2): 335–353. DOI:.CrossrefGoogle Scholar

  • Tobajas, M., E. Garcı́a-Calvo, M. H. Siegel, and S. E. Apitz. 1999. “Hydrodynamics and mass transfer prediction in a three-phase airlift reactor for marine sediment biotreatment.” Chemical Engineering Science 54 (21): 5347–5354. DOI:.CrossrefGoogle Scholar

  • Toor, H. L., and J. M. Marchello. 1958. “Film-penetration model for mass and heat transfer.” AIChE Journal 4 (1): 97–101. DOI:.CrossrefGoogle Scholar

  • Vafajoo, Leila, Houman Savoji, Roozbeh Fayal, and Ali Baghaei. 2011. “Modeling and simulation of tanks-in-series airlift bioreactors for production of lactic acid by fermentation.” Korean Journal of Chemical Engineering 28 (8): 1727–1735. DOI:.CrossrefGoogle Scholar

  • Van Baten, J. M., J. Ellenberger, and R. Krishna. 2003. “Hydrodynamics of internal air-lift reactors: Experiments versus CFD simulations.” Chemical Engineering and Processing: Process Intensification 42 (10): 733–742. DOI:.CrossrefGoogle Scholar

  • Vial, Ch, S. Poncin, G. Wild, and N. Midoux. 2005. “Experimental and theoretical analysis of axial dispersion in the liquid phase in external-loop airlift reactors.” Chemical Engineering Science 60 (22): 5945–5954. DOI:.CrossrefGoogle Scholar

  • Whitman, Walter G. 1962. “The two film theory of gas absorption.” International Journal of Heat and Mass Transfer 5 (5): 429–433. DOI:.CrossrefGoogle Scholar

  • Xia, Jian-Ye, Si-Jing Wang, Si-Liang Zhang, and Jian-Jiang Zhong. 2008. “Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor.” Biochemical Engineering Journal 38 (3): 406–413. DOI:.CrossrefGoogle Scholar

  • Znad, H., V. Báleš, and Y. Kawase. 2004. “Modeling and scale up of airlift bioreactor.” Computers & Chemical Engineering 28 (12): 2765–2777. DOI:.CrossrefGoogle Scholar

  • Znad, H., M. Tokumura, and Y. Kawase. 2006. “Axial distribution of oxygen concentration in different airlift bioreactor scales: Mathematical modeling and simulation.” Chemical Engineering & Technology 29 (9): 1042–1047. DOI:.CrossrefGoogle Scholar

About the article

Published Online: 2017-04-13


The authors acknowledge the Universidad Autónoma de Sinaloa (PROFAPI 2014/175 and PROFAPI 2014/086) and the Tecnológico Nacional de México (TecNM, Grant 5024.13-P) for the financial support for this work.


Citation Information: International Journal of Chemical Reactor Engineering, Volume 15, Issue 4, 20160173, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2016-0173.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in