Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 15, Issue 6


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Effect of the Operating Conditions on the Growth of Carbonaceous Nanomaterials over Stainless Steel Foams. Kinetic and Characterization Studies

Nieves Latorre
  • Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50009 Zaragoza,Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando Cazaña
  • Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50009 Zaragoza,Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Víctor Sebastián
  • Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50009 Zaragoza,Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos Royo
  • Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50009 Zaragoza,Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Romeo
  • Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50009 Zaragoza,Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Monzón
  • Corresponding author
  • Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50009 Zaragoza,Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-14 | DOI: https://doi.org/10.1515/ijcre-2017-0121


This work is an advance on the development of structured catalytic reactors. Here, we present the results of the effect of the main operational variables (reaction temperature, % H2 and % C2H6) on the kinetics of carbonaceous nanomaterials (CNMs) formation by catalytic decomposition of ethane over stainless steel foams. Some of the main drawback problems that occur during the operation of chemical structured reactors are related to the preparation of long term stable coatings. The washcoating is the most used technique to deposit the catalytic layer over the substrate. The application of this procedure is quite complex in the case of geometries such as foams or cloths. In the case of the deposition of layers of carbonaceous nanomaterials, an alternative route, avoiding the washcoating, is their direct growth by catalytic decomposition of light hydrocarbons over the surface of the metallic substrate. In the case of structured steel foams, the substrate already contains the catalytic active phases for this reaction, like Fe and Ni, among of the minor components (Cr, Mn, Mo) that can act as promotors/stabilizers.

The nanomaterials obtained after reaction were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results indicate that there is a maximum, obtained at ca. 900 °C, 33.3 % of C2H6 and 1.7 % of H2, in the quality of the carbonaceous nanomaterials grown. Under these conditions, the CNMs consist mainly of few layer graphene (FLG) and graphite nanolayers (GNL) encapsulating the metallic nanoparticles. In addition, the kinetic results indicate the existence of another optimum, at ca. 800 °C, 33.3 % of C2H6 and 1.7 % of H2, in the productivity to the carbonaceous nanomaterials. The existence of these optimums is due to the driving force for the diffusion of the carbon atoms through the Fe-Ni nanoparticles (NPs) obtained at high temperatures (e. g. above 800 °C) caused by the competence between two opposite phenomena: the increase of the rate of carbon diffusion through the metallic nanoparticles of Fe-Ni and the deactivation of these nanoparticles. The deactivation is the consequence of the encapsulation and reconstruction of the nanoparticles during the formation of the several types of CNMs. The evolution of the carbon mass during the reaction time was analyzed using a phenomenological kinetic model that takes into account the main stages involved during the formation of carbonaceous nanomaterials: hydrocarbon decomposition, carburization, diffusion, precipitation and deactivation. The results obtained from the kinetic model, along with the characterization results, enable quantify the influence of the operating variables on each stage of the carbonaceous nanomaterial formation and therefore open the way to optimize the process.

Keywords: carbon nanofibers; graphene related materials; stainless steel foam; kinetic modelling; CCVD


  • Alstrup, I.J. 1988. “A New Model Explaining Carbon Filament Growth on Nickel, Iron, and Ni-Cu Alloy Catalysts.” Journal of Catalysis 109:241–251.CrossrefGoogle Scholar

  • Amadou, J., D. Begin, P. Nguyen, J.P. Tessonnier, T. Dintzer, E. Vanhaecke, M.J. Ledoux, and C. Pham-Huu. 2006. “Synthesis of a Carbon Nanotube Monolith with Controlled Macroscopic Shape.” Carbon 44 (12):2587–2592.CrossrefGoogle Scholar

  • Armenise, S., E. García-Bordejé, J.L. Valverde, E. Romeo, and A. Monzón. 2013. “A Langmuir–Hinshelwood Approach to the Kinetic Modelling of Catalytic Ammonia Decomposition in an Integral Reactor.” PhysChem Chemical Physical 15:12104–12117.Google Scholar

  • Baddour, C.E., and C. Briens. 2005a. “Carbon Nanotube Synthesis: A Review Int.” International Journal of Chemical Reactor Engineering 3 (1):R3.Google Scholar

  • Baddour, C.E., F. Fadlallah, D. Nasuhoglu, R. Mitra, L. Vandsburger, and J.L. Meunier. 2009. Carbon 47 (1):313–318.CrossrefGoogle Scholar

  • Baddour, C.E., D.C. Upham, and J.L. Meunier. 2010. “Direct and Repetitive Growth Cycles of Carbon Nanotubes on Stainless Steel Particles by Chemical Vapor Deposition in a Fluidized Bed.” Carbon 48 (9):2652–2656.CrossrefGoogle Scholar

  • Boix, A.V., J.M. Zamaro, E.A. Lombardo, and E.E. Miró. 2003. “The Beneficial Effect of Silica on the Activity and Thermal Stability of PtCoFerrierite-washcoated Cordierite Monoliths for the SCR of NOx with CH4.” Applied Catalysis B 46:121–132.CrossrefGoogle Scholar

  • Cazaña, F., N. Latorre, P. Tarifa, J. Labarta, E. Romeo, and A. Monzón. 2017. “Synthesis of Pd-Al/biomorphic Carbon Catalysts Using Cellulose as Carbon Precursor.” Catalysis Today In press. doi: .CrossrefGoogle Scholar

  • Chatterjee, A., and B.L. Deopura. 2002. “Carbon Nanotubes and Nanofibre: An Overview.” Fibers and Polymers 3:134–139.CrossrefGoogle Scholar

  • Chen, D., K.O. Christensen, E. Ochoa-Fernández, Z. Yu, B. Tøtdal, N. Latorre, A. Monzón, and A. Holmen. 2005. “Synthesis of Carbon Nanofibers: Effects of Ni Crystal Size during Methane Decomposition.” Journal of Catalysis 229:82–96.CrossrefGoogle Scholar

  • Chesnokov, V.V., and R.A. Buyanov. 2000. “The Formation of Carbon Filaments upon Decomposition of Hydrocarbons Catalysed by Iron Subgroup Metals and Their Alloys.” Russian Chemical Reviews 69 (7):623–638.CrossrefGoogle Scholar

  • Chinthaginjala, J.K., K. Seshan, and L. Lefferts. 2007. “Preparation and Application of Carbon-Nanofiber Based Microstructured Materials as Catalyst Supports.” Industrial & Engineering Chemistry Research 46:3968–3978.CrossrefGoogle Scholar

  • Corella, J., J. Adanez, and A. Monzón. 1988. “Some Intrinsic Kinetic Equations and Deactivation Mechanisms Leading to Deactivation Curves with a Residual Activity.” Industrial & Engineering Chemistry Research 27 (3):375–381.CrossrefGoogle Scholar

  • De Jong, K.P., and J.W. Geus. 2000. “Carbon Nanofibers: Catalytic Synthesis and Applications.” Catalysis Reviews – Science and Engineering 42:481–510.CrossrefGoogle Scholar

  • Faugeras, C., A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W.A. De Heer. 2008. “Few-Layer Graphene on SiC, Pyrolitic Graphite, and Graphene: A Raman Scattering Study.” Applied Physics Letters 92:011914.CrossrefGoogle Scholar

  • Ferrari, A.C., J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim. 2006. “Raman Spectrum of Graphene and Graphene Layers.” Physical Review Letters 97:187401.CrossrefGoogle Scholar

  • Gao, L.Z., L. Kiwi-Minsker, and A. Renken. 2008. “Growth of Carbon Nanotubes and Microfibers over Stainless Steel Mesh by Cracking of Methane.” Surface and Coatings Technology 202:3029–3042.CrossrefGoogle Scholar

  • Geim, A.K. 2009. “Graphene: Status and Prospects.” Science 324:1530–1534.CrossrefGoogle Scholar

  • Graf, D., F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz. 2007. “Spatially Resolved Raman Spectroscopy of Single-And Few-Layer Graphene.” Nano Letters 7:238–242.CrossrefGoogle Scholar

  • Hata, K., D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima. 2004. “Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes.” Science 306 (5700): 1362–1364.CrossrefGoogle Scholar

  • Inagaki, M., and L.R. Radovic. 2002. “Nanocarbons.” Carbon 40:2279–2282.CrossrefGoogle Scholar

  • Jarrah, N.A., J.G. Van Ommen, and L. Lefferts. 2006. “Mechanistic Aspects of the Formation of Carbon-Nanofibers on the Surface of Ni Foam: A New Microstructured Catalyst Support.” Journal of Catalysis 239:460–469.CrossrefGoogle Scholar

  • Kaminska, K., J. Lefebvre, D.G. Austing, and P. Finnie. 2007. “Real-Time in Situ Raman Imaging of Carbon Nanotube Growth.” Nanotechnology 18:165707–165713.CrossrefGoogle Scholar

  • Kato, T., and R. Hatakeyama. 2010. “Direct Growth of Short Single-Walled Carbon Nanotubes with Narrow-Chirality Distribution by Time-Programmed Plasma Chemical Vapor Deposition.” ACS Nano 4 (12):7395–7400.CrossrefGoogle Scholar

  • Kokai, F., I. Nozaki, T. Okada, A. Koshio, and T. Kuzumaki. 2011. “Efficient Growth of Multi-Walled Carbon Nanotubes by Continuous-Wave Laser Vaporization of Graphite Containing B4C.” Carbon 49 (4):1173–1181.CrossrefGoogle Scholar

  • Kong, X.K., C.L. Chen, and Q.W. Chen. 2014. “Doped Graphene for Metal-Free Catalysis.” Chemical Society Reviews 43:2841–2857.CrossrefGoogle Scholar

  • Latorre, N., F. Cazaña, V. Martínez-Hansen, C. Royo, E. Romeo, and A. Monzón. 2011. “Ni-Co-Mg-Al Catalysts for Hydrogen and Carbonaceous Nanomaterials Production by CCVD of Methane.” Catalysis Today 172:143–151.CrossrefGoogle Scholar

  • Latorre, N., F. Cazaña, V. Sebastián, C. Royo, E. Romeo, M.A. Centeno, and A. Monzón. 2016. “Growth of Carbonaceous Nanomaterials over Stainless Steel Foams. Effect of Activation Temperature.” Catalysis Today 273:41–49.CrossrefGoogle Scholar

  • Latorre, N., E. Romeo, F. Cazaña, T. Ubieto, C. Royo, J.I. Villacampa, and A. Monzón. 2010a. “Carbon Nanotube Growth by Catalytic Chemical Vapor Deposition: A Phenomenological Kinetic Model.” The Journal of Physical Chemistry C 114:4773–4782.CrossrefGoogle Scholar

  • Latorre, N., E. Romeo, J.I. Villacampa, F. Cazaña, C. Royo, and A. Monzón. 2010b. “Kinetics of Carbon Nanotubes Growth on a Ni–Mg–Al Catalyst by CCVD of Methane: Influence of Catalyst Deactivation.” Catalysis Today 154:217–223.CrossrefGoogle Scholar

  • Latorre, N., J.I. Villacampa, T. Ubieto, E. Romeo, C. Royo, A. Borgna, and A. Monzon. 2008. “Development of Ni–Al Catalysts for Hydrogen and Carbon Nanofibre Production by Catalytic Decomposition of Methane. Effect of MgO Addition.” Topics in Catalysis 51:158–168.CrossrefGoogle Scholar

  • Lee, Y., J. Park, Y. Choi, H. Ryu, and H. Lee. 2002. “Temperature-Dependent Growth of Vertically Aligned Carbon Nanotubes in the Range 800− 1100 C.” The Journal of Physical Chemistry B 106:7614–7618.CrossrefGoogle Scholar

  • Li, J., E. Croiset, and L. Ricardez-Sandoval. 2015. “Carbon Nanotube Growth: First-Principles-Based Kinetic Monte Carlo Model.” Journal of Catalysis 326:15–25.CrossrefGoogle Scholar

  • M S Software. 1995. Statistical Analysis. Salt Lake City, USA: Micromath.Google Scholar

  • Martínez-Hansen, V., N. Latorre, C. Royo, E. Romeo, E. García-Bordejé, and A. Monzón. 2009. “Development of Aligned Carbon Nanotubes Layers over Stainless Steel Mesh Monoliths.” Catalysis Today 147S:S71–S75.Google Scholar

  • Maruyama, S., R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno. 2002. “Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes from Alcohol.” Chemical Physics Letters 360 (3-4):229–234.CrossrefGoogle Scholar

  • Matatov-Meytal, Y., and M. Sheintuch. 2002. “Catalytic Fibers and Cloths.” Applied Catalysis A 231:1–16.CrossrefGoogle Scholar

  • Mehdipour, H., and K. Ostrikov. 2012. “Kinetics of Low-Pressure, Low-Temperature Graphene Growth: Toward Single-Layer, Single-Crystalline Structure.” ACS Nano 6:10276–10286.CrossrefGoogle Scholar

  • Meyer, C.I., A.J. Marchi, A. Monzon, and T.F. Garetto. 2009. “Deactivation and Regeneration of Cu/SiO 2 Catalyst in the Hydrogenation of Maleic Anhydride. Kinetic Modeling.” Applied Catalysis A: General 367 (1-2):122–129.CrossrefGoogle Scholar

  • Monzon, A., G. Lolli, S. Cosma, S.B. Mohamed, and D.E. Resasco. 2008. “Kinetic Modeling of the SWNT Growth by CO Disproportionation on CoMo Catalysts.” Journal of Nanoscience and Nanotechnology 8:6141–6152.CrossrefGoogle Scholar

  • Monzón, A., E. Romeo, and A. Borgna. 2003. “Relationship between the Kinetic Parameters of Different Catalyst Deactivation Models.” Chemical Engineering Journal 94:19–28.CrossrefGoogle Scholar

  • Mu, C., K. Huang, T. Cheng, H. Wang, H. Yu, and F. Peng. 2016. “Ni Foams Decorated with Carbon Nanotubes as Catalytic Stirrers for Aerobic Oxidation of Cumene.” Chemical Engineering Journal 306:806–815.CrossrefGoogle Scholar

  • Nebesnyi, A., V. Kotov, A. Sviatenko, D. Filonenko, A. Khovavko, and B. Bondarenko. 2017. “Carbon Nanomaterial Formation on Fresh-Reduced Iron by Converted Natural Gas.” Nanoscale Researcher Letters 12:107–114.CrossrefGoogle Scholar

  • Noda, S., H. Sugime, K. Hasegawa, K. Kakehi, and Y. Shiratori. 2010. “A Simple Combinatorial Method Aiding Research on Single-Walled Carbon Nanotube Growth on Substrates.” Japanese Journal Applications Physical 49 (2):02BA02.Google Scholar

  • Novoselov, K.S. 2011. “Nobel Lecture: Graphene: Materials in the Flatland.” Reviews Modern Physical 83:837–849.CrossrefGoogle Scholar

  • Pacheco Benito, S., and L. Lefferts. 2010. “The Production of a Homogeneous and Well-Attached Layer of Carbon Nanofibers on Metal Foils.” Carbon 48:2862–2872.CrossrefGoogle Scholar

  • Pérez-Cabero, M., E. Romeo, C. Royo, A. Monzón, A. Guerrero-Ruíz, and I. Rodríguez-Ramos. 2004. “Growing Mechanism of CNTs: A Kinetic Approach.” Journal of Catalysis 224:197–205.CrossrefGoogle Scholar

  • Reichelt, E., M.P. Heddrich, M. Jahn, and A. Michaelis. 2014. “Fiber Based Structured Materials for Catalytic Applications.” Applied Catalysis A 476:78–90.CrossrefGoogle Scholar

  • Rodríguez, J.C., J.A. Peña, A. Monzón, R. Hughes, and K. Li. 1995. “Kinetic Modelling of the Deactivation of a Commercial Silica-Alumina Catalyst during Isopropylbenzene Cracking.” Chemical Engineering Journal 58:7–13.Google Scholar

  • Romeo, E., M. Saeys, A. Monzón, and A. Borgna. 2014. “Carbon Nanotube Formation during Propane Decomposition on Boron-Modified Co/Al2O3 Catalysts: A Kinetic Study.” International Journal of Hydrogen Energy 39 (31):18016–18026.CrossrefGoogle Scholar

  • Sano, N., Y. Hori, S. Yamamoto, and H. Tamon. 2012. “A Simple Oxidation–Reduction Process for the Activation of A Stainless Steel Surface to Synthesize Multi-Walled Carbon Nanotubes and Its Application to Phenol Degradation in Water.” Carbon 50:115–122.CrossrefGoogle Scholar

  • Sano, N., S. Yamamoto, and H. Tamon. 2012. “Uniform Synthesis of Multi-Walled Carbon Nanotubes in a Stainless Steel Porous Block.” Carbon 50:5618–5630.Google Scholar

  • Sclove, S 1987. “Application of Model-Selection Criteria to Some Problems in Multivariate Analysis.” Psychometrika 52: 333–343.CrossrefGoogle Scholar

  • Su, D.S., S. Perathoner, and G. Centi. 2013. “Nanocarbons for the Development of Advanced Catalysts.” Chemical Reviews 113:5782–5816.CrossrefGoogle Scholar

  • Takenaka, S., S. Kobayashi, H. Ogihara, and K. Otsuka. 2003. “Ni/SiO2 Catalyst Effective for Methane Decomposition into Hydrogen and Carbon Nanofiber.” Journal of Catalysis 217: 79–87.Google Scholar

  • Teo, K.B.K., C. Singh, M. Chhowalla, and W.I. Milne. 2003. “Catalytic Synthesis of CNTs and CNFs.” In Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa, Vol. 10, 1–22. American Scientific Publishers.Google Scholar

  • Terrones, M. 2003. “Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes.” Annual Review of Materials Research 33:419–501.CrossrefGoogle Scholar

  • Tribolet, P., and L. Kiwi-Minsker. 2005. “Carbon Nanofibers Grown on Metallic Filters as Novel Catalytic Materials.” Catalysis Today 102-103:15–22.CrossrefGoogle Scholar

  • Valentini, M., G. Groppi, C. Cristiani, M. Levi, E. Tronconi, and P. Forzatti. 2001. “The Deposition of Γ-Al2O3 Layers on Ceramic and Metallic Supports for the Preparation of Structured Catalysts.” Catalysis Today 69: 307–314.CrossrefGoogle Scholar

  • Villacampa, J.I., C. Royo, E. Romeo, J.A. Montoya, P. Del Angel, and A. Monzón. 2003. “Catalytic Decomposition of Methane over Ni-Al2O3 Coprecipitated Catalysts: Reaction and Regeneration Studies.” Applied Catalysis A 252: 363–383.CrossrefGoogle Scholar

  • Yasaki, S., Y. Yoshino, K. Ihara, and K. Ohkubo, U.S. Patent No. 5, 208 (4 May 1993).Google Scholar

  • Zhanga, G., S. Sunb, D. Yanga, J.P. Dodeletb, and E. Sachera. 2008. “The Surface Analytical Characterization of Carbon Fibers Functionalized by H2SO4/HNO3 Treatment.” Carbon 46: 196–205.CrossrefGoogle Scholar

About the article

Received: 2017-06-30

Accepted: 2017-09-20

Published Online: 2017-10-14

Citation Information: International Journal of Chemical Reactor Engineering, Volume 15, Issue 6, 20170121, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0121.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in