Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 16, Issue 10


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Parametric Mathematical Modelling of Cristal Violet Dye Electrochemical Oxidation Using a Flow Electrochemical Reactor with BDD and DSA Anodes in Sulfate Media

Fernando F. Rivera
  • Corresponding author
  • CONACYT-Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro, México, C.P. 76703
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisca A. Rodríguez
  • Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Av. Primero de Mayo, Cuautitlán Izcalli, Estado de México, México, C.P. 54740
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eligio P. Rivero
  • Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Av. Primero de Mayo, Cuautitlán Izcalli, Estado de México, México, C.P. 54740
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martín R. Cruz-Díaz
  • Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Av. Primero de Mayo, Cuautitlán Izcalli, Estado de México, México, C.P. 54740
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-17 | DOI: https://doi.org/10.1515/ijcre-2017-0116


An important issue in electrochemical oxidations of pollutant compounds, like organic dyes, is identifying a suitable correlation between operational conditions and electrochemical process performance. In such sense, this work deals with the parametric modelling of direct electrochemical incineration of crystal violet (CV) dye in a FM01-LC flow electrochemical reactor with a plastic spacer configuration using boron doped diamond (BDD) and dimensionally stable (IrO2 and IrO2-SnO2-Sb2O5) anode plates. Mathematical model takes into account the fluid dynamics effects by the use of FM01-LC reactor considering mass transport rate of organic compound (R) from bulk solution to electrode surface, characterized by a dispersion coefficient and Pe number. The effect of strong oxidants produced in the electrode surface can be neglected since the characteristic time constant reaction of pollutants with such oxidants is lower than those describing the diffusion of organic compound to the electrode surface. Model parameters were estimated throughout a fitting method of the experimental data. The model proposed here predicted a 99.7 removal percentage of CV with boron doped diamond and IrO2-SnO2-Sb2O5 anodes obtained experimentally, meanwhile a 79 % removal with the IrO2 anode was reached at Re = 2204 during an electrolysis time of 7200 s for both cases. In the case of IrO2 anodes, complex interactions between hydroxyl-radical and electrode surface provokes an intermediate kinetic process, with an effectiveness factor of 0.59. When BDD and IrO2-SnO2-Sb2O5 anodes were used, the removal process mediated by hydroxyl-radicals absorbed in electrode surface was fully limited by mass transport.

Keywords: dye degradation; direct electrochemical oxidation; parametric mathematical model; FM01-LC reactor; electrochemical reactor engineering


  • Allen, T.L. 1951. “The Oxidation of Oxalate Ion by Peroxydisulfate.” Journal of American Chemical Society 73:3589–3593.CrossrefGoogle Scholar

  • Bengoa, C., A. Montillet, P. Legentilhomme, and J. Legrand. 2000. “Characterization and Modeling of the Hydrodynamic Behavior in the Filter-Press-Type FM01-LC Electrochemical Cell by Direct Flow Visualization and Residence Time Distribution.” Industrial Engineering and Chemistry Research 39:2199–2206.CrossrefGoogle Scholar

  • Cañizares, P., J. García-Gómez, J. Lobato, and M.A. Rodrigo. 2004. “Modeling of Wastewater Electro-Oxidation Processes Part I. General Description and Application to Inactive Electrodes.” Industrial Engineering and Chemistry Research 43:1915–1922.CrossrefGoogle Scholar

  • Carberry, J. 2001. Chemical and Catalytic Reaction Engineering, 2nd ed. New York (NY): Mc Graw Hill.Google Scholar

  • Comninellis, C. 1994. “Electrocatalysis in the Electrochemical Conversion/Combustion of Organic Pollutants for Waste Water Treatment.” Electrochimica Acta 39 (11-12):1857–1862.CrossrefGoogle Scholar

  • Cruz-Díaz, M., F. Rivera, E. Rivero, and I. González. 2012. “The FM01-LC Reactor Modelling: Using Axial Dispersion Model with a Reaction Term Coupled with a Continuous Stirred Tank.” Electrochimica Acta 63:47–54.CrossrefGoogle Scholar

  • Cruz-Díaz, M., E. Rivero, F. Almazán-Ruiz, A. Torres-Mendoza, and I. González. 2014. “Design of a New FM01-LC Reactor in Parallel Plate Configuration Using Numerical Simulation and Experimental Validation with Residence Time Distribution (RTD).” Chemical Engineering and Processing 85:145–154.CrossrefWeb of ScienceGoogle Scholar

  • Danckwerts, P. 1953. “Continuous Flow Systems.” Chemical Engineering Science 2:1–13.Web of ScienceCrossrefGoogle Scholar

  • Freitas, R., R. Oliveira, M. Santos, L. Bulhões, and E. Pereira. 2006. “Preparation of Pt Thin Film Electrodes Using the Pechini Method.” Material Letters 60:1906–1910.CrossrefGoogle Scholar

  • Froment, G., and K. Bischoff. 1990. Chemical Reactor Analysis and Design, 2nd ed. New York (NY): Wiley.Google Scholar

  • Griffiths, M., C. Ponce De León, and F.C. Walsh. 2005. “Mass Transport in the Rectangular Channel of a Filter-Press Electrolyzer (The FM01-LC Reactor).” AIChE Journal 51:682–687.CrossrefGoogle Scholar

  • Hoogendoorn, C., and J. Lips. 1965. “Axial Mixing of Liquid in Gas-Liquid Flow through Packed Beds.” Canadian Journal of Chemical Engineering 43 (3):125–131.CrossrefGoogle Scholar

  • House, D.A. 1962. “Kinetics and Mechanism of Oxidations by Peroxydisulfate.” Chemical Reviews 62 (3):185–203.CrossrefGoogle Scholar

  • Jaimes, R., J. Vazquez-Arenas, I. González, and M. Galván. 2017. “Theoretical Evidence of the Relationship Established between the HO Radicals and H2O Adsorptions and the Electroactivity of Typical Catalysts Used to Oxidize Organic Compounds.” Electrochimica Acta 229:345–351.Web of ScienceCrossrefGoogle Scholar

  • Kormann, C., D.W. Bahnemann, and M.R. Hoffmann. 1988. “Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO, and Desert Sand.” Environmental Science and Technology 22:798–806.CrossrefGoogle Scholar

  • Levenspiel, O. 1999. Chemical Reaction Engineering, 3rd ed. New York (NY): Jhon Wiley and Sons.Google Scholar

  • López, O., I. González, and J. Nava. 2008. “Electrochemical Incineration of Indigo Textile Dye in Filter-Press Type FM01-LC Electrochemical Cell Using mesh-DSA Anode.” ECS Transactions 15:395–402.Google Scholar

  • Martínez-Huitle, C., and E. Brillas. 2015. “Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: An Updated Review.” Applied Catalysis B-Environmental 166-167:603–643.Web of ScienceCrossrefGoogle Scholar

  • Martínez-Huitle, C., and S. Ferro. 2006. “Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes.” Chemical Society Reviews 35:1324–1340.CrossrefGoogle Scholar

  • Martínez-Huitle, C., M.A. Rodrigo, I. Sires, and O. Scialdone. 2015. “Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review.” Chemical Reviews 115:13362−13407.CrossrefWeb of ScienceGoogle Scholar

  • Mascia, M., A. Vacca, and S. Palmas. 2012. “Fixed Bed Reactors with Three Dimensional Electrodes for Electrochemical Treatment of Waters for Disinfection.” Chemical Engineering Journal 211–212:479–487.Web of ScienceGoogle Scholar

  • Mascia, M., A. Vacca, A.M. Polcaro, S. Palmas, J. Rodriguez-Ruiz, and A. Da Pozzo. 2010. “Electrochemical Treatment of Phenolic Waters in Presence of Chloride with Boron-Doped Diamond (BDD) Anodes: Experimental Study and Mathematical Model.” Journal of Hazardous Materials 174:314–322.CrossrefWeb of ScienceGoogle Scholar

  • Nava, J., E. Butrón, and I. González. 2008. “Importance of Hydrodynamic Conditions on the Electrochemical Incineration of Cresols, Indigo Textile and Vinasses Present in Industrial Wastewater Using a Filter-Press Type FM01-LC Reactor with BDD Electrodes.” Sustainable Environmental Research 18:221–230.Google Scholar

  • Palma-Goyes, R., F. Guzmán-Duque, G. Peñuela, I. González, J. Nava, and R. Torres-Palma. 2010. “Electrochemical Degradation of Crystal Violet with BDD Electrodes: Effect of Electrochemical Parameters and Identification of Organic By-Products.” Chemosphere 81:26–32.Web of ScienceCrossrefGoogle Scholar

  • Panizza, M., A. Barbucci, R. Ricotti, and G. Cerisola. 2007. “Electrochemical Degradation of Methylene Blue.” Separation and Purification Technology 54:382–387.CrossrefWeb of ScienceGoogle Scholar

  • Panizza, M., and G. Cerisola. 2005. “Application of Diamond Electrodes to Electrochemical Processes.” Electrochimica Acta 51:191–199.CrossrefGoogle Scholar

  • Pechini, M., inventor; Sprague Electric Co., assignee. 1967 “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor”, United States patent US Patent 3,330,697.

  • Pérez, T., I. León, and J. Nava. 2013. “Numerical Simulation of Current Distribution along the Boron-Doped Diamond Anode of a Filter-Press-Type FM01-LC Reactor during the Oxidation of Water.” Journal of Electroanalytical Chemistry 707:1–6.CrossrefWeb of ScienceGoogle Scholar

  • Po, H.N., and T.L. Allen. 1968. “The Oxidation of Oxalate Ion by Peroxodisulfate. IV. The Kinetics and Mechanism of the Uncatalyzed Reaction.” Journal of American Chemical Society 90 (5):1127–1131.CrossrefGoogle Scholar

  • Rajkumar, K., and M. Muthukumar. 2012. “Optimization of Electro-Oxidation Process for the Treatment of Reactive Orange 107 Using Response Surface Methodology.” Environmental Science and Pollution Research 19:148–160.CrossrefWeb of ScienceGoogle Scholar

  • Rivera, F., M. Cruz-Díaz, E. Rivero, and I. González. 2010. “Analysis and Interpretation of Residence Time Distribution Experimental Curves in FM01LC Reactor Using Axial Dispersion and Plug Dispersion Exchange Models with Closed–Closed Boundary Conditions.” Electrochimica Acta 56:361–371.CrossrefGoogle Scholar

  • Rivera, F., C. Ponce De León, F.C. Walsh, and J.L. Nava. 2015a. “The Reaction Environment in a Filter-Press Laboratory Reactor: The FM01-LC Flow Cell.” Electrochimica Acta 161:436–452.CrossrefWeb of ScienceGoogle Scholar

  • Rivera, F., C. Ponce De León, F.C. Walsh, and J.L. Nava. 2015b. “The Filter-Press FM01-LC Laboratory Flow Reactor and Its Applications.” Electrochimica Acta 163:338–354.Web of ScienceCrossrefGoogle Scholar

  • Robinson, T., G. McMullan, R. Marchant, and P. Nigam. 2001. “Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with A Proposed Alternative.” Bioresource Technology 77:247–255.CrossrefGoogle Scholar

  • Rodríguez, F.A., M. Mateo, J. Aceves, E. Rivero, and I. González. 2013. “Electrochemical Oxidation of Bio-Refractory Dye in a Simulated Textile Industry Effluent Using DSA Electrodes in a Filter-Press Type FM01-LC Reactor.” Environmental Technology 34 (5):573–583.Web of ScienceCrossrefGoogle Scholar

  • Scialdone, O. 2009. “Electrochemical Oxidation of Organic Pollutants in Water at Metal Oxide Electrodes: A Simple Theoretical Model Including Direct and Indirect Oxidation Processes at the Anodic Surface.” Electrochimica Acta 54:6140–6147.Web of ScienceCrossrefGoogle Scholar

  • Sires, I., E. Brillas, M.A. Oturan, M.A. Rodrigo, and M. Panizza. 2014. “Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review.” Environmental Science and Pollution Research 21:8336–8367.Web of ScienceCrossrefGoogle Scholar

  • Trinidad, P., and F.C. Walsh. 1996. “Hydrodynamic Behaviour of the FM01-LC Reactor.” Electrochimica Acta 41:493–502.CrossrefGoogle Scholar

  • Van Swaaij, W., J. Charpentier, and J. Villermaux. 1969. “Residence Time Distribution in the Liquid Phase of Trickle Flow in Packed Columns.” Chemical Engineering Science 24:1083–1095.CrossrefGoogle Scholar

  • Wendt, H., and G. Kreysa. 1999. Electrochemical Engineering: Science and Technology in Chemical and Other Industries. New York (NY):Springer Science & Business Media.Google Scholar

About the article

Received: 2017-06-28

Revised: 2017-11-14

Accepted: 2018-01-06

Published Online: 2018-01-17

Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 10, 20170116, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0116.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in