Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 10

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Photocatalytic Degradation of Caffeine in a Solar Reactor System

Raúl Luna
  • Corresponding author
  • Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación Av. Venustiano Carranza s/n, col. Revolución, Poza Rica de Hidalgo, Veracruz, México 93390
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carolina Solis
  • Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación Av. Venustiano Carranza s/n, col. Revolución, Poza Rica de Hidalgo, Veracruz, México 93390
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nayeli Ortiz
  • Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación Av. Venustiano Carranza s/n, col. Revolución, Poza Rica de Hidalgo, Veracruz, México 93390
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aurora Galicia
  • Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación Av. Venustiano Carranza s/n, col. Revolución, Poza Rica de Hidalgo, Veracruz, México 93390
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Francisca Sandoval
  • Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación Av. Venustiano Carranza s/n, col. Revolución, Poza Rica de Hidalgo, Veracruz, México 93390
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brenda Zermeño
  • Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava # 6, San Luis Potosí, S.L.P., México 78210
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edgar Moctezuma
  • Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava # 6, San Luis Potosí, S.L.P., México 78210
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-19 | DOI: https://doi.org/10.1515/ijcre-2017-0126

Abstract

In this paper, solar photodegradation of caffeine in aqueous solution was studied, this organic compound is the most consumed stimulant around the world. The degradation experiments were carried outdoors in a solar reactor and Evonik-Degussa P25 TiO2 was used as catalyst. The photochemical and photocatalytic effect were tested in aqueous solutions of caffeine. Experimental results indicate that the organic compound is easily degraded over a very short period of time using 0.5 g L-1 of catalyst. The kinetic analysis indicates that the initial reaction rate of caffeine is described by the LH-HW model. However, the original compound cannot be mineralized very fast, caffeine is converted to other organic compounds with a longer lifetime before the mineralization, converting caffeine CO2 and water.

Keywords: caffeine; microcontaminant; solar photocatalysis; degradation with TiO2

References

  • Ahmad, S., S. Siong, and M.N. Mohamad. 2015. “Spectrophotometric Analysis of Caffeine.” International Journal of Analytical Chemistry 2015: 1–7. Hindawi Publishing Corporation International Journal of Analytical Chemistry Volume 2015, Article ID 170239,7 pages http://dx.doi.org/10.1155/2015/170239.CrossrefWeb of Science

  • Álvarez, P.M., J. Jaramillo, F. López-Piñero, and P.K. Plucinski. 2010. “Preparation and Characterization of Magnetic TiO2 Nanoparticles and Their Utilization for the Degradation of Emerging Pollutants in Water.” Applied Catalysis B: Environmental 100:338–345.CrossrefWeb of ScienceGoogle Scholar

  • Arfanis, M.K., P. Adamou, N.G. Moustakas, T.M. Triantis, A.G. Kontos, and P. Falaras. 2017. “Photoctalytic Degradation of Salicylic Acid and Caffeine Emerging Contaminants Using Titania Nanotubes.” Chemical Engineering Journal 310:525–536.CrossrefGoogle Scholar

  • Basha, S., D. Keane, K. Nolan, M. Oelgemöller, J. Lawler, J.M. Tobin, and A. Morrissey. 2015. “UV-induced Photocatalytic Degradation of Aqueous Acetaminophen: The Role of Adsorption and Reaction Kinetics.” Environment Sciences Pollution Researcher 22 (3): 2219–2230.CrossrefGoogle Scholar

  • Bernabeu, A., R.F. Vercher, L. Santos-Juanes, P.J. Simón, C. Lardín, M.A. Martínez, J.A. Vicente, R. González, C. Llosá, A. Arques, and A.M. Amat. 2011. “Solar Photocatalysis as a Tertiary Treatment to Remove Emerging Pollutants from Wastewater Treatment Plant Effluents.” Catalysis Today 161:235–240.Web of ScienceCrossrefGoogle Scholar

  • Bolong, N., A.F. Ismail, M.R. Salim, and T. Matsuura. 2009. “A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal.” Desalination 239:229–246.CrossrefWeb of ScienceGoogle Scholar

  • Bruton, T., A. Alboloushi, B. De La Garza, Bi-O. Kim, and R.U. Halden. 2010. “Fate of Caffeine in the Environment and Ecotoxicological Considerations.” In Rolf U. Halden, (Ed.), Contaminants of emerging concern in the environment: Ecological and human health considerations. Vol. 1048, 257–273. Washington, DC.: American Chemical Soiety. DOI: CrossrefGoogle Scholar

  • Buerge, I.J., T. Poiger, M.D. Muller, and H. Buser. 2003. “Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters.” Evironmental Science & Technology 37:691–700.CrossrefGoogle Scholar

  • Calle, A.S 2011. Determinación Analítica De La Cafeína En Diferentes Productos Comerciales. Vol. III. Barcelona, España: Universitat Politécnica de Catalunya (UPC).Google Scholar

  • Carotenuto, M., G. Lofrano, A. Siciliano, F. Aliberti, and M. Guida. 2014. “TiO2 Photocatalytic Degradation of Caffeine and Ecotoxicological Assessment of Oxidation By-Products.” Global Nest Journal 20: 1–12. DOI: .CrossrefGoogle Scholar

  • Dalmázio, I., L.S. Santos, R.P. Lopes, M.N. Eberlin, and R. Augusti. 2005. “Advanced Oxidation of Caffeine in Water: On-Line and Real-Time Monitoring by Electrospray Ionization Mass Spectrometry.” Environmental Science & Technology 39: 5982–5988.CrossrefGoogle Scholar

  • Daughton, C.G., and T.A. Ternes. 1999. “Pharmaceuticals and personal care products in the environment: agents of subtle change?” Environmental Health Perspectives 107 (Suppl 6): 907–938. DOI: .CrossrefGoogle Scholar

  • De Lasa, H., B. Serrano, and M. Salaices. 2005. Photocatalytic Reaction Engineering. New York, USA: Springer978-0-387-27591-8. DOI: CrossrefGoogle Scholar

  • Delgado, S., 2011. Evaluación De Tecnologías Potenciales De Reducción De La Contaminación De Las Aguas De Canarias (Tecnoagua). Santa Cruz de Tenerife, España: Proyecto Universidad de La laguna.Google Scholar

  • Escobedo, J.F., E.N. Gomes, A.P. Oliveira, and J. Soares. 2009. “Modeling Hourly and Daily Fractions of UV, PAR and NIR to Global Solar Radiation under Various Sky Conditions at Botucatu, Brasil.” Applied Energy 86:299–309.CrossrefGoogle Scholar

  • Félix–Cañedo, T.E., J.C. Durán–Álvarez, and B. Jiménez–Cisneros. 2013. “The Occurrence and Distribution of a Group of Organic Micropollutants in Mexico City’s Water Sources.” Science of the Total Environment 454-455:109–118.CrossrefWeb of ScienceGoogle Scholar

  • Fernández-Ibáñez, P., J. Blanco, S. Malato, and F.J. De Las Nieves. 2003. “Aplication of Colloidal Stability of TiO2 Particles for Recovery and Reuse in a Solar Photocatalysis.” Water Research 37:3180–2188.CrossrefGoogle Scholar

  • Fujishima, A., T.N. Rao, and D.A. Tryk. 2000. “Titanium Dioxide Photocatalysis.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1:1–21.CrossrefWeb of ScienceGoogle Scholar

  • Fujishima, A., X. Zhang, and D.A. Tryk. 2008. “TiO2 Photocatalysis and Related Surface Phenomena.” Surface Science Reports 63:515–582.CrossrefWeb of ScienceGoogle Scholar

  • Gardinali, P.R., and X. Zhao. 2002. “Trace Determination of Caffeine in Surface Water Samples by Liquid Chromatography–Atmospheric Pressure Chemical Ionization–Mass Spectrometry (LC–APCI–MS).” Environment International 28 (6): 521–528.CrossrefGoogle Scholar

  • Gaya, U.I., and A.H. Abdullah. 2008. “Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9:1–12.Web of ScienceCrossrefGoogle Scholar

  • Gil, M.J., A.M. Soto, J.I. Usma, and O.D. Gutiérrez. 2012. “Emerging Contaminants in Waters: Effects and Possible Treatments.” Producción + Limpia 7:52–73.Google Scholar

  • Klamerth, N., S. Malato, M. I. Maldonado, A. Agüera, and A. R. Fernández-Alba. 2010a. “Application of Photo-Fenton as a Tertiary Treatment of Emerging Contaminants in Municipal Wastewater.” Environmental Science && Technology 44 (5): 1792–1798. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Klamerth, N., L. Rizzo, S. Malato, Manuel I. Maldonado, A. Agüera, and A.R. Fernández-Alba. 2010b. “Degradation of Fifteen Emerging Contaminants at μgL−1 Initial Concentrations by Mild Solar Photo-Fenton in MWTP Effluents.” Water Research 44 (2): 545–554. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Klamerth, N., N. Miranda, S. Malato, A. Agüera, A.R. Fernández-Alba, M.I. Maldonado, and J.M. Coronado. 2009. “Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2.” Catalysis Today 144 (1-2): 124–130. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Klavarioti, M., D. Mantzavinos, and D. Kassinos. 2009. “Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes.” Environment International 35:402–417.CrossrefWeb of ScienceGoogle Scholar

  • Lalia, Boor Singh, Corrado Garlisi, Giovanni Palmisano, and Raed Hashaikeh. 2016. “Photocatalytic Activity of an Electrophoretically Deposited Composite Titanium Dioxide Membrane Using Carbon Cloth as a Conducting Substrate.” RSC Advances 6 (69): 64219–64227. DOI: 10.1039/c6ra07390e.Web of ScienceCrossrefGoogle Scholar

  • Lapworth, D.J., N. Baran, N.E. Stuart, and R.S. Ward. 2012. “Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence.” Environmental Pollution 163:287–303.Web of ScienceCrossrefGoogle Scholar

  • Li Chin, C., C.H. Luo, S.W. Huang, Y.C. Wu, and Y.C. Huang. 2011. “Photocatalytic Degradation Mechanism and Kinetics of Caffeine in Aqueous Suspension of Nano-TiO2.” Advanced Materials Research 214: 97–102.CrossrefGoogle Scholar

  • Linley, Stuart, YingYing Liu, Carol J. Ptacek, David W. Blowes, and Frank X. Gu. 2014. “Recyclable Graphene Oxide-Supported Titanium Dioxide Photocatalysts with Tunable Properties.” ACS Applied Materials & Interfaces 6 (7): 4658–4668.CrossrefWeb of ScienceGoogle Scholar

  • Marques, Rita R.N., Maria J. Sampaio, Pedro M. Carrapiço, Cláudia G. Silva, Sergio Morales-Torres, Goran Dražić, Joaquim L. Faria, and Adrián M.T. Silva. 2013. “Photocatalytic degradation of caffeine: Developing solutions for emerging pollutants.” Catalysis Today 209: 108–115. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Martínez, M.J., M.J. Gómez, S. Herrera, M.D. Hernando, A. Agüera, and A.R. Fernández-Alba. 2012. “Occurrence and Persistence of Organic Emerging Contaminants and Priority Pollutants in Five Sewage Treatment Plants of Spain: Two Years Pilot Survey Monitoring.” Environmental Pollution 164:267–273.CrossrefWeb of ScienceGoogle Scholar

  • Moctezuma, E., E. Leyva, M. López, A. Pinedo, B. Zermeño, and B. Serrano. 2013. “Photocatalytic Degradation of Metoprolol Tartrate.” Topics in Catalysis 56 (18–20):1875–1882.Web of ScienceCrossrefGoogle Scholar

  • Murray, K.E., S.M. Thomas, and A.A. Bodour. 2010. “Prioritizing Research for Trace Pollutants and Emerging Contaminants in the Freshwater Environment.” Environmental Pollution 158:3462–3471.CrossrefWeb of ScienceGoogle Scholar

  • Pal, A., K. Yew-Hoong Gin, A. Yu-Chen Lin, and M. Reinhard. 2010. “Impacts of Emerging Organic Contaminants on Freshwater Resources: Review of Recent Occurrences, Sources, Fate and Effects.” Science of the Total Environment 408:6062–6069.CrossrefWeb of ScienceGoogle Scholar

  • Pardo, R., Y. Alvarez, D. Barr Al Tafalla, and M. Farré. 2007. “Cafeína: Un Nutriente, Un Fármaco, O Una Droga De Abuso.” Adicciones 19:225–238.CrossrefGoogle Scholar

  • Phong, D.D., and J. Hur. 2015. “Insight into Photocatalytic Degradation of Dissolved Organic Matter in UVA/TiO2 Systems Revealed by Fluorescence EEM-PARAFAC.” Water Research 87: 119–126.CrossrefWeb of ScienceGoogle Scholar

  • Pinedo, A., M. López, E. Leyva, B. Zermeño, B. Serrano, and E. Moctezuma. 2016. “Photocatalytic Decomposition of Metoprolol and Its Intermediate Organic Reaction Products: Kinetics and Degradation Pathway.” International Journal Chemical Reactions Engineering 14: 809–820.Google Scholar

  • Pollack, K., K. Balazs, and O. Ogunseitan. 2009. “Proteomic Assessment of Caffeine Effects on Coral Symbionts.” Environ. Sci. Technol 43:2085–2091.CrossrefWeb of ScienceGoogle Scholar

  • Prieto-Rodríguez, L., 2012. “Eliminación de microcontaminantes orgánicos presentes en aguas residuales urbanas mediante combinación de procesos de depuración biológica y oxidación química”. Tesis Doctoral. Universidad de Almería. España.Google Scholar

  • Servicio Meteriológico Nacional, accessed June 2017: http://smn.cna.gob.mx/es/informacion-climatologica-ver-estado?estado=ver

  • Shu, Z., J.R. Bolton, M. Belosevic, and M.G. El Din. 2013. “Photodegradation of Emerging Micropollutants Using the Medium-Pressure UV/H2O2 Advanced Oxidation Process.” Water Research 47:2881–2889.CrossrefWeb of ScienceGoogle Scholar

  • Souza, Fernanda Siqueira, and Liliana Amaral Féris. 2015. “Degradation of Caffeine by Advanced Oxidative Processes: O3 and O3/UV.” Ozone: Science & Engineering 37 (4): 379–384. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Tavares, C., and R.S. Kimiko. 2012. “Cafeína Para El Tratamiendo Del Dolor.” Revista Brasileña Anestesiol 63 (3):387–401.Google Scholar

  • Telo, João P., and Abel J. S. C. Vieira. 1997. “Mechanism of Free Radical Oxidation of Caffeine in Aqueous Solution.” Journal of the Chemical Society, Perkin Transactions 2 (9): 1755–1758. DOI: .CrossrefGoogle Scholar

  • Zhang, J., L.P. Wang, W. Guo, X.D. Peng, M. Li, and Z.B. Yuan. 2011. “Sensitive Differential Pulse Stripping Voltammetry of Caffeine in Medicines and Cola Using a Sensor Based on Multi-Walled Carbon Nanotubes and Nafion.” International Journal of Electrochemical Science 6:997–1006.Google Scholar

About the article

Received: 2017-07-01

Revised: 2017-12-04

Accepted: 2018-01-06

Published Online: 2018-01-19


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 10, 20170126, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0126.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in