Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 10

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Effect of Biomass Concentration on Oxygen Mass Transfer, Power Consumption, Interfacial Tension and Hydrodynamics in a Multiphase Partitioning Bioreactor

Manuel Alejandro Lizardi-Jiménez
  • CONACYT – Instituto Tecnológico Superior de Tierra Blanca, Avenue Veracruz s/n, Héroes de Puebla, Colonia Pemex, 95180 Tierra Blanca, Veracruz, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pedro López-Ordáz
  • Laboratorio de Micro y Nanotecnología, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Santo Thomas, Miguel Hidalgo, 11340 México City, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Margarita Mercedes González-Brambila
  • Departamento de Energía, Laboratorio de Análisis de Procesos, Universidad Autónoma Metropolitana-Azcapotzalco, San Pablo 180 Azcapotzalco, Colonia Reynosa Tamaulipas, 02200 México City, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Linares-Morales
  • Neolpharma S.A. de C.V., Pharmaceutical Group, Boulevard Ferrocarrilles 277, 02300, Azcapotzalco, México City, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rodrigo Melgarejo-Torres
  • Corresponding author
  • Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, Col. Santa Fe, 05348 México City, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-16 | DOI: https://doi.org/10.1515/ijcre-2017-0201

Abstract

Several studies have reported that the hydrodynamics are not affected by the biomass in multiphase partitioning bioreactors. This work aims to demonstrate the effect of biomass concentration (0, 1, 3 and 5 g L−1) on the oxygen mass transfer coefficients, the droplet size of the dispersed phase, power consumption and superficial tension in a multiphase partitioning bioreactor (ionic liquid-aqueous-air-biomass system). At a biomass concentration of 5 g L−1, the oxygen mass transfer coefficient (kLa) increased by 55% (249 h−1) compared with the abiotic system (160 h−1). In the multiphasic system, the droplet size (d32) decreased when the biomass concentration was increased, producing an increment in the mass transfer area of the dispersed phase. In addition, the power consumption decreased by 44 % compared to a previous report without biomass. Furthermore, the increment of biomass concentration decreased the superficial tension by up to 15 %. A biomass increment in a multiphase system not also increases product yield, but also enhances the bioconversion process. The results obtained suggest that it is obligatory to consider the effect of biomass concentration on hydrodynamic characterisation, design, scale-up and optimisation for improving the performance of biotechnological processes using multiphase bioreactors.

Keywords: biomass effect; hydrodynamics; superficial tension; power consumption; oxygen mass transfer; multiphase bioreactors

References

  • Agble, D. K., and M. A. Mendes-Tatsis. 2000. “The Effect of Surfactants on Interfacial Mass Transfer in Binary Liquid–Liquid Systems.” International Journal Heat Massachusetts Transfer 43: 1025–1034. doi:.CrossrefGoogle Scholar

  • Aldric, J. M., S. Gillet, F. Delvigne, C. Blecker, F. Lebeau, J. Wathelet, G. Manigat, and P. Thonart. 2009. “Effect of Surfactants and Biomass on the Gas/Liquid Mass Transfer in an Aqueous-Silicone Oil Two-Phase Partitioning Bioreactor Using Rhodococcus Erythropolis T902.1 To Remove VOCs from Gaseous Effluents.” Journal Chemical Technological Biotechnology 84: 1274–1283. doi:.CrossrefGoogle Scholar

  • Almeida, H. F. D., P. J. Carvalho, K. A. Kurnia, J. Lopes-da-Silva, J. A. Coutinho, and M. Freire. 2016. “Surface Tensions of Ionic Liquids: Non-Regular Trend along the Number of Cyano Groups.” Fluid Phase Equilibria 409: 458–465. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Amaral, P. F. F., M. G. Freire, M. H. M. Rocha-Leão, I. M. Marrucho, J. A. P. Coutinho, and M. A. Z. Coelho. 2008. “Optimization of Oxygen Mass Transfer in a Multiphase Bioreactor with Perfluorodecalin as a Second Liquid Phase.” Biotechnology and Bioengineering 99: 588–598. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Amézcua-Vega, C., H. M. Poggi-Varaldo, F. Esparza-García, E. Ríos-Leal, and R. Rodríguez-Vázquez. 2007. “Effect of Culture Conditions on Fatty Acids Composition of a Biosurfactant Produced by Candida Ingens and Changes of Surface Tension of Culture Media.” Bioresource Technology 98: 237–240. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Amit, K., K. Tiwari Sonu, and S. K. Saha. 2013. “Aggregation Behaviour and Thermodynamics of Mixed Micellization of Gemini Surfactants with a Room Temperature Ionic Liquid in Water and Water-Organic Solvent Mixed Media.” Journal Chemical Thermodynamics 60: 29–40. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Arakawa, N. S., L. Gobbo-Neto, S. R. Ambrosio, G. A. Antonucci, S. V. Sampaio, M. P. Tallarico, S. Said, T. J. Schmidt, and F. Batista Da Costa. 2013. “Unusual Biotransformation Products of the Sesquiterpene Lactone Budlein A by Aspergillus Species.” Phytochemistry 96: 92–100. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Ascanio, G., B. Castro, and E. Galindo. 2004. “Measurement of Power Consumption in Stirred Vessels: A Review.” Chemical Engineering Researcher Design 82: 1282–1290. doi:.CrossrefGoogle Scholar

  • Brito-Bazan, M., D. H. Cuervo-Amaya, G. Corkidi, and E. Galindo. 2017. “Air and Oil Dispersions in a Four-Phase Fermentation Model, Studied under Varying Physicochemical Conditions and Retrofitted Constant Gassed Power Input.” Chemical Engineering Researcher Design 120: 316–324. doi:.CrossrefGoogle Scholar

  • Castillo-Araiza, C.O., D. Palmerín-Carreño, A. Prado-Barragán, and S. Huerta-Ochoa. 2017. “On the conceptual design of a partitioning technology for the bioconversion of (+)-valencene to (+)-nootkatone on whole cells: Experimentation and modelling.” Chemical Engineering and Processing: Process Intensification 122: 493–507. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Daugulis, J. 1997. “Partitioning Bioreactors.” Current Opinion in Biotechnology 8: 169–174. doi:.CrossrefGoogle Scholar

  • Doig, S. D., L. M. O’Sullivan, S. Patel, J. M. Ward, and J. M. Woodley. 2001. “Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239.” Enzyme and Microbial Technology 28 (2-3): 265–274. doi:.CrossrefGoogle Scholar

  • Fuchs, R., D. Dewey, and A. Humphrey. 1971. “Effect of Surface Aeration on Scale-Up Procedures for Fermentation Processes.” Industrial Engineering Chemical Processing Design Developments 10: 190–196. doi:.CrossrefGoogle Scholar

  • Garcia-Ochoa, F, and E Gomez. 2009 (3). “Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview.” Biotechnology Advances 27 (2): 153–176. DOI:.CrossrefWeb of ScienceGoogle Scholar

  • Hadjiev, D., E. N. Sabiri, and A. Zanati. 2006. “Mixing Time in Bioreactors under Aerated Conditions.” Biochemical Engineering Journal 27: 323–330. doi:.CrossrefGoogle Scholar

  • Lovick, J., A. A. Mouza, S. V. Paras, G. J. Lye, and P. Angeli. 2005. “Drop Size Distribution in Highly Concentrated liquid–Liquid Systems in Stirred Tanks Using a Light Back Scattering Method.” Journal Chemical Technological Biotechnology 80: 545–552. doi:.CrossrefGoogle Scholar

  • Malinowski, J. J. 2001. “Two-Phase Partitioning Bioreactors in Fermentation Technology.” Biotechnology Advances 19: 25–538. doi:.CrossrefGoogle Scholar

  • Melgarejo-Torres, R., C. O. Castillo-Araiza, P. López-Ordáz, N. V. Calleja-Castañeda, J. L. Cano-Velasco, R. M. Camacho-Ruíz, G. J. Lye, and S. Huerta-Ochoa. 2015. “Evaluation of Ionic Liquids as Dispersed Phase during the Production of Lactones with E. Coli in a Three Phase Partitioning Bioreactor.” Chemical Engineering Journal 279: 379–386. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Palmerín-Carreño, D. M., C. O. Castillo-Araiza, O. M. Rutiaga-Quiñones, J. R. Verde-Calvo, and S. Huerta-Ochoa. 2016. “Kinetic, oxygen mass transfer and hydrodynamic studies in a three-phase stirred tank bioreactor for the bioconversion of (+)-valencene on Yarrowia lipolytica 2.2ab.” Biochemical Engineering Journal 113: 37–46. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Patel, N., and J. Thibault. 2009. “Enhanced in Situ Dynamic Method for Measuring kLa in Fermentation Media.” Biochemical Engineering Journal 47 (1–3): 48–54. doi:.CrossrefGoogle Scholar

  • Schugerl, K. 1981. “Oxygen Transfer into Highly Viscous Media.” In Reactors and Reactions. Advances in Biochemical Engineering Series, edited by A. Fiechter, 71–174. Berlin: Springer-Verlag. doi:.CrossrefGoogle Scholar

  • Tolman, R. C. 1949. “The Effect of Droplet Size on Surface Tension.” Journal Chemical Physical 17: 333. doi:.CrossrefGoogle Scholar

  • Torres-Martínez, D., R. Melgarejo-Torres, M. Gutiérrez-Rojas, C. Aguilera-Vázquez, M. Micheletti, G. Lye, and S. Huerta-Ochoa. 2009. “Hydrodynamic and Oxygen Mass Transfer Studies in a Three-Phase (Air–Water–Ionic Liquid) Stirred Tank Bioreactor.” Biochemical Engineering Journal 45: 209–217. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Walsh, C. T., and J. Latham. 1986. “Mechanism Based Inactivation of the Flavoprotein Cyclohexanone Monooxygenase by S-Oxygenation.” Journal of Protein Chemistry 5: 79–87.CrossrefGoogle Scholar

  • Wei-Chuan, J., W. Ruey-Shin, and Y. Yu-Hong. 2015. “Applications of a Lipopeptide Biosurfactant, Surfactin, Produced by Microorganisms.” Biochemical Engineering Journal 103: 158–169. doi:.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-10-23

Accepted: 2018-03-02

Revised: 2018-01-03

Published Online: 2018-03-16


Conflict of interests: The authors declare no conflict of interests.


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 10, 20170201, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0201.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in