Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 16, Issue 10


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Simultaneous Diesel and Oxygen Transfer Rate on the Production of an Oil-degrading Consortium in an Airlift Bioreactor: High-dispersed Phase Concentration

Abhishek DuttaORCID iD: http://orcid.org/0000-0002-0714-1119
  • Faculteit Industriële Ingenieurswetenschappen, KU Leuven, Campus Groep T Leuven, Andreas Vesaliusstraat 13, B-3000Leuven, Belgium
  • Departement Materiaalkunde, KU Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Heverlee-Leuven, Belgium
  • orcid.org/0000-0002-0714-1119
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio Valdivia-RiveraORCID iD: http://orcid.org/0000-0002-6576-1228 / Manuel Alejandro Lizardi-JiménezORCID iD: http://orcid.org/0000-0002-2054-5556
Published Online: 2018-04-12 | DOI: https://doi.org/10.1515/ijcre-2017-0206


The aim of this study was to simultaneously evaluate diesel transfer rate (DTR) and oxygen transfer rate (OTR) on the production of an oil-degrading consortium in a three-phase airlift bioreactor (ALB) working at high hydrocarbon phase concentration with the purpose of determine whether the oxygen transfer rate is increased or diminished by an increase in the oil-phase concentration. Increase in hydrocarbon concentration allows an increase in DTR and a consequently higher DTR/OTR ratio thus avoiding hydrocarbon mass transfer limitations. This study demonstrates evidence that at high diesel concentrations, the main carbon fate is the production of biosurfactants.

Keywords: Airlift bioreactor; diesel transfer rate; oil-degrading consortium; oxygen transfer rate


  • Angeles, O., S.A. Medina-Moreno, A. Jiménez-González, A. Coreño-Alonso, and M.A. Lizardi-Jiménez. 2017. “Predominant Mode of Diesel Uptake: Direct Interfacial versus Emulsification in Multiphase Bioreactor.” Chemical Engineering Science 165 (29): 108–112.CrossrefWeb of ScienceGoogle Scholar

  • Batista, S.B., A.H. Mounteer, F.R. Amorim, and M. R. Totola. 2006. “Isolation and Characterization of Biosurfactant/Bioemulsifier-Producing Bacteria from Petroleum Contaminated Sites.” Bioresource Technology 97 (6): 868–875.CrossrefGoogle Scholar

  • Chisti, Y. 1989. “Airlift Reactors: Current Technology.” In Airlift Biorreactors, 1st ed, edited by A. Biorreactors and Y. Chisti, 33–86. Essex: Elsevier.Google Scholar

  • Clarke, K.G., P.C. Williams, M.S. Smit, and S.T.L. Harrison. 2006. “Enhancement and Repression of the Volumetric Oxygen Transfer Coefficient through Hydrocarbon Addition and Its Influence on Oxygen Transfer Rate in Stirred Tank Bioreactors.” Biochemical Engineering Journal 28 (3): 237–242.CrossrefGoogle Scholar

  • Coates, J.D., J. Woodward, J. Allen, P. Philp, and D.R. Lovley. 1997. “Anaerobic Degradation of Polycyclic Aromatic Hydrocarbons and Alkanes in Petroleum-Contaminated Marine Harbor Sediments.” Applied and Environmental Microbiology 63 (9): 3589–3593.Google Scholar

  • Denis, B., O. Angeles, M.A. Lizardi-Jiménez, and A. Dutta. 2017. “Numerical Evaluation of Direct Interfacial Uptake by a Microbial Consortium in an Airlift Bioreactor.” International Biodeterioration & Biodegradation 119: 542–551.Web of ScienceCrossrefGoogle Scholar

  • Freitas, C., M. Fialová, J. Zahradnik, and J.A. Teixeira. 2000. “Hydrodynamics of a Three-Phase External-Loop Airlift Bioreactor.” Chemical Engineering Science 55 (21): 4961–4972.CrossrefGoogle Scholar

  • Jiménez-González, A., S.A. Medina-Moreno, V. Vargas-García, and M.A. Lizardi-Jiménez. 2015. “Evaluación de coeficientes volumétricos de transferencia de hidrocarburos poliaromáticos y oxígeno en sistemas multifásicos (líquido-líquido y líquido-líquido-gas): efecto de la carga volumétrica de solventes biocompatibles (Evaluation of volumetric transfer coefficients of polyaromatic hydrocarbons and oxygen in multiphase systems (liquid-liquid and liquid-liquid-gas): effect of volumetric loading of biocompatible solvents).” Revista Mexicana de Ingeniería Química 14 (3): 723–734.Google Scholar

  • Kermanshahi-Pour, A., D. Karamanev, and A. Margaritis. 2005. “Biodegradation of Petroleum Hydrocarbons in an Immobilized Cell Airlift Bioreactor.” Water Research 39 (15): 3704–3714.CrossrefGoogle Scholar

  • Lizardi‐Jiménez, M.A., E.Y. López Sánchez, A. Gómez‐de‐Jesús, N.U. García‐Cruz, and C.I. Hernández‐Flores. 2016. “Sinkhole‐Native Oil‐Degrading Microbial Consortium for Hydrocarbon‐Polluted Seawater Remediation. CLEAN–Soil.” Air, Water 44 (8): 1046–1050.CrossrefGoogle Scholar

  • Lizardi-Jiménez, M.A., G. Saucedo-Castaneda, F. Thalasso, and M. Gutiérrez-Rojas. 2011. “Dynamic Technique to Determine Hexadecane Transfer Rate from Organic Phase to Aqueous Phase in a Three-Phase Bioreactor.” International Journal of Chemical Reactor Engineering 9 (1): 1–9.Google Scholar

  • Lizardi-Jiménez, M.A., G. Saucedo-Castañeda, F. Thalasso, and M. Gutiérrez-Rojas. 2012. “Simultaneous Hexadecane and Oxygen Transfer Rate on the Production of an Oil-Degrading Consortium in a Three-Phase Airlift Bioreactor.” Chemical Engineering Journal 187 (1): 160–165.CrossrefWeb of ScienceGoogle Scholar

  • Luo, L., F. Liu, Y. Xu, and J. Yuan. 2011. “Hydrodynamics and Mass Transfer Characteristics in an Internal Loop Airlift Reactor with Different Spargers.” Chemical Engineering Journal 175: 494–504.CrossrefWeb of ScienceGoogle Scholar

  • Medina-Moreno, S.A., S. Huerta-Ochoa, and M. Gutiérrez-Rojas. 2005. “Hydrocarbon Biodegradation in Oxygen Limited Sequential Batch Reactors by Consortium from Weathered Oil-Contaminated Soil.” Canadian Journal of Microbiology 51 (3): 231–239.CrossrefGoogle Scholar

  • Mehrnia, M.R., J. Towfighi, B. Bonakdarpour, and M.M. Akbarnegad. 2004. “Influence of Top-Section Design and Draft-Tube Height on the Performance of Airlift Bioreactors Containing Water-In-Oil Microemulsion.” Journal of Chemical Technology and Biotechnology 79 (3): 260–267.CrossrefGoogle Scholar

  • Mostoufi, N., M. R. Mehrnia, and M. Vali. 2014. “Hydrodynamics of an Airlift Bioreactor Treating Petroleum-Based Liquids: Experiment and CFDM. Energy Sources.” Part A: Recovery, Utilization, and Environmental Effects 36 (12): 1296–1304.Google Scholar

  • Pirollo, M.P.S., A.P. Mariano, R.B. Lovaglio, S.G.V.A.O. Costa, V. Walter, R. Hausmann, and J. Contiero. 2008. “Biosurfactant Synthesis by Pseudomonas Aeruginosa LBI Isolated from a Hydrocarbon-Contaminated Site.” Journal of Applied Microbiology 105 (5): 1484–1490.Web of ScienceCrossrefGoogle Scholar

  • Ryan, D.R., W.D. Leukes, and S.G. Burton. 2005. “Fungal Bioremediation of Phenolic Wastewaters in an Airlift Reactor.” Biotechnology Progress 21 (4): 1068–1074.Google Scholar

  • Saravanan, P., K. Pakshirajan, and P. Saha. 2008. “Biodegradation of Phenol and M-Cresol in a Batch and Fed Batch Operated Internal Loop Airlift Bioreactor by Indigenous Mixed Microbial Culture Predominantly Pseudomonas Sp.” Bioresource Technology 99 (18): 8553–8558.Web of ScienceCrossrefGoogle Scholar

  • Sotiriadis, A.A., R.B. Thorpe, and J.M. Smith. 2005. “Bubble Size and Mass Transfer Characteristics of Sparged Downwards Two-Phase Flow.” Chemical Engineering Science 60 (22): 5917–5929.CrossrefGoogle Scholar

  • Tzintzun-Camacho, O., O. Loera, H.C. Ramírez-Saad, and M. Gutiérrez-Rojas. 2012. “Comparison of Mechanisms of Hexadecane Uptake among Pure and Mixed Cultures Derived from a Bacterial Consortium.” International Biodeterioration & Biodegradation 70: 1–7.Web of ScienceCrossrefGoogle Scholar

  • Wang, Z., and M. Fingas. 1997. “Developments in the Analysis of Petroleum Hydrocarbons in Oils, Petroleum Products and Oil-Spill-Related Environmental Samples by Gas Chromatography.” Journal of Chromatography A 774 (1–2): 51–78.CrossrefGoogle Scholar

  • Yu, H., and G.H. Huang. 2011. “Isolation and Characterization of Biosurfactant-And Bioemulsifier-Producing Bacteria from Petroleum Contaminated Sites in Western Canada.” Soil and Sediment Contamination 20 (3): 274–288.CrossrefGoogle Scholar

About the article

Received: 2017-10-30

Accepted: 2018-03-19

Revised: 2018-03-13

Published Online: 2018-04-12

Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 10, 20170206, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0206.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in