Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 16, Issue 10


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Modeling and Hydraulic Characterization of a Filter-Press-Type Electrochemical Reactor by Using Residence Time Distribution Analysis and Hydraulic Indices

Alejandro Regalado-Méndez / Juan Mentado-Morales / Carlos Estrada Vázquez / Gerardo Martínez-Villa / Mario E. Cordero
  • Departamento de Ingenierías, Escuela de Ingeniería Química, Universidad Popular Autónoma del Estado de Puebla, Barrio de Santiago, Puebla, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis G. Zárate
  • Departamento de Ingenierías, Escuela de Ingeniería Química, Universidad Popular Autónoma del Estado de Puebla, Barrio de Santiago, Puebla, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sigurd Skogestad
  • Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ever Peralta-Reyes
Published Online: 2018-03-23 | DOI: https://doi.org/10.1515/ijcre-2017-0210


Modeling and hydraulic characterization of a filter-press-type electrochemical reactor was studied by means of residence time distribution and hydraulic indices. For these purposes, a theoretical and approximation of residence time distribution experimental curves with axial dispersion model and Danckwerts’ boundary conditions, the Morrill dispersion index, the short-circuiting index, the Morrill volumetric efficiency index, and useful volume percent were used in order to establish deviation from plug-flow ideal, as well as dead volume, and the hydraulic efficiency. The hydraulic efficiency measure of the filter-press-type electrochemical reactor confirms uniformity of flow and a highly effective useful volume percent (91 %-98 % for all liquid flow rates tested). The axial dispersion coefficients computed (0.0005–0.0021 m2/s) indicates a small deviation of plug-flow ideal. Hence, the plug-flow reactor model is reliable for purpose modeling of the filter-press-type electrochemical reactor used in this research. Furthermore, hydrodynamic characterization of the tested filter-press-type electrochemical reactor by using hydraulic indices demonstrated its suitability for several electrochemical applications.

Keywords: axial dispersion model; filter-press-type electrochemical reactor; hydraulic characterization; plug-flow reactor; residence time distribution


  • Aguilar, R., S.A. Martínez, M.G. Rodríguez, and G. Soto. 2005. “Process Analysis for Treatment of Industrial Plating Wastewater: Simulation and Control Approach.” Chemical Engineering Journal 105: 139–145.CrossrefGoogle Scholar

  • Bengoa, C., A. Montillet, P. Legentilhomme, and J. Legranad. 2000. “Characterization and Modelling of Hydrodynamic Behavior in the Filter-Press-Type FM01LC Electrochemical Cell by Direct Flow Visualization and Residence Time Distribution.” Industrial Engineering Chemistry Research 39: 2199–2206.CrossrefGoogle Scholar

  • Bengoa, C., A. Montillet, P. Legentilhomme, and J. Legrand. 1997. “Flow Visualization and Modeling of a Filter-Press Type Electrochemical Cell.” Journal of Applied Electrochemistry 27: 1313–1322.CrossrefGoogle Scholar

  • Metcalf and Eddy Inc. staff; Burton, F.L., H.D Stensel, and G. Tchobanoglous. 2003. Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill.Google Scholar

  • Castellanos-Cruz, Mayra, 2017. “Degradación De 2-Clorofenol En Un Reactor Electroquímico Tipo Filtro Prensa FM01-LC Con Electrodos De Diamante Dopados Con Boro,” B. Sc. thesis of Environmental Engineering, Universidad del Mar, Mexico. Publication of results in progress.Google Scholar

  • Chauhan, N., and R. Liu. 2012. “Electrochemical Technologies for Energy Storage.”. In Liu, R., L. Zhang, X. Sun, H. Liu, and J. Zhang (Eds.), Electrochemical Technologies for Energy Storage and Conversion. 1–43. Weinheim: Wiley-VCH Verlag & Co.Google Scholar

  • Colli, A. N., and J. M. Bisang. 2011. “Evaluation of the Hydrodynamic Behaviour of Turbulence Promoter in Parallel Plate Electrochemical Reactors by Means of the Dispersion Model.” Electrochimica Acta 56: 7312–7318.CrossrefGoogle Scholar

  • Colli, A.N., R. Toelzer, M.E.H. Bergmann, and J.M. Bisang. 2013. “Mass-Transfer Studies in an Electrochemical Reactor with a Small Interelectrode Gap.” Electrochimica Acta 100: 78–82.CrossrefWeb of ScienceGoogle Scholar

  • Cruz-Díaz, M., F.F. Rivera, E.P. Rivero, and I. Gónzalez. 2012. “The FM01-LC Reactor Modeling Using Axial Dispersion Model with a Reaction Term Coupled with a Continuous Stirred Tank (CST).” Electrochimica Acta 63: 47–54.CrossrefWeb of ScienceGoogle Scholar

  • Cruz-Díaz, M.R., E.P. Rivero, and F.J. Almazán-Ruiz. 2014. “Design of a New FM01-LC Reactor in Parallel Plate Configuration Using Numerical Simulation and Experimental Validation with Residence Time Distribution (RTD).” Chemical Engineering and Processing 85: 145–154.CrossrefWeb of ScienceGoogle Scholar

  • Danckwerts, P.V. 1953. “Continuous Flow Systems: Distribution of Residence Times.” Chemical Engineering Science 2: 1–13.CrossrefGoogle Scholar

  • Flores, O. J., J. L. Nava, and G. Carreño. 2014. “Arsenic Removal Groundwater by Electrocoagulation Process in a Filter-Press-Type FM01LC Reactor.” International Journal of Electrochemical Science 9: 6658–6667.Google Scholar

  • Gónzalez-García, J., V. Montiel, A. Aldaz, J.A. Conesa, and G. Codina. 1998. “Hydrodynamic Behavior of a Filter-Press Electrochemical Reactor with Carcon Felt as a Three-Dimensional Electrode.” Industrial & Engineering Chemistry Research 37: 4501–4511.CrossrefGoogle Scholar

  • Jamadi, M.H., and A. Alighardashi. 2017. “Application of Froude Dynamic Similitude in Anaerobic Baffled Reactors to Prediction of Hydrodynamic Characteristics of a Prototype Reactor Using a Model Reactor.” Water Science and Engineering 10: 53–58.Web of ScienceCrossrefGoogle Scholar

  • Ji, J.Y., K. Zheng, Y.J. Xing, and P. Zheng. 2012. “Hydraulic Characteristics and Their Effects on Working Performance of Compartmentalized Anaerobic Reactor.” Bioresource Technology 116: 47–52.Web of ScienceCrossrefGoogle Scholar

  • Levenspiel, O. 2012. Tracer Technology, Modeling the Flow of Fluids. New York: Springer.Google Scholar

  • Levenspiel, O., and K.B. Bischoff. 1964. “Patterns of Flow in Chemical Process Vessels.” Advances in Chemical Engineering 4: 95–198.CrossrefGoogle Scholar

  • López-García, U.M., P.E. Hidalgo, J.C. Olvera, F. Castañeda, H. Ruiz, and G. Orozco. 2013. “The Hydrodynamic Behavior of Parallel-Plate Electrochemical Reactor.” Fuel 110: 162–170.CrossrefWeb of ScienceGoogle Scholar

  • Mansouri, Y., A.A. Zinatizadeh, P. Mohammadi, M. Irandoust, A. Akhbari, and R. Davoodi. 2012. “Hydraulic Characteristics Analysis of an Anaerobic Rotatory Biological Contactor (Anrbc) Using Tracer Experiments and Response Surface Methodology (RSM).” Korean Journal of Chemical Engineering 29: 891–902.CrossrefWeb of ScienceGoogle Scholar

  • Persson, J., N.L.G. Somes, and T.H.F. Wong. 1999. “Hydraulics Efficiency of Constructed Wetlands and Ponds.” Water Science & Technology 40: 291–300.CrossrefGoogle Scholar

  • Rivera, F.R., M.R. Cruz-Díaz, E.P. Rivero, and I. Gonzaléz. 2010. “Analysis and Interpretation of Residence Time Distribution Experimental Curves in FM01-LC Reactor Using Axial Dispersion and Plug Dispersion Excharge Models with Closed-Closed Boundary Conditions.” Electrochimica Acta 56: 316–371.Google Scholar

  • Rivero, E.P, M.R. Cruz-Díaz, F.J Almazán-Ruiz, and I. Gónzalez. 2015. “Modeling the Effect of Non-Ideal Flow Pattern on Tertiary Distribution in Filter-Press-Type Electrochemical Reactor for Copper Recovery.” Chemical Engineering Research and Design 100: 422–433.Web of ScienceCrossrefGoogle Scholar

  • Rivero, E.P., F.F. Rivera, M.R. Cruz-Díaz, E. Mayen, and I. Gónzalez. 2012. “Numerical Simulation of Mass Transport in a Filter Press Type Electrochemical Reactor FM01-LC: Comparison of Predicted and Experimental Mass Transfer Coefficient.” Chemical Engineering Research and Design 90: 1969–1978.Web of ScienceCrossrefGoogle Scholar

  • Rodríguez, F.A., E.P. Rivero, and I. González. 2017. “Electrogeneration of Active Chlorine in Filter-Press-Type Reactor Using a New Sb2O5 Doped Ti/RuO2-ZrO2 Electrode: Indirect Indigoid Dye Oxidation.” International Journal of Chemical Reactor Engineering 15: 20160095.Web of ScienceGoogle Scholar

  • Rodríguez, G., F.Z. Sierra-Espinosa, A. Álvarez, S. Silva, and J.A. Hernández. 2016. “CFD Prediction and Experimental Validation of Surface Cathode Concentration in Filter Press Parallel Plate Electrolysers.” Catalysis Today 271: 227–234.CrossrefWeb of ScienceGoogle Scholar

  • Sarathai, Y., T. Koottatep, and A. Morel. 2010. “Hydraulic Characteristics of an Anaerobic Baffled Reactor as Onsite Wastewater Treatment System.” Journal of Environmental Sciences 22: 1319–1326.Web of ScienceCrossrefGoogle Scholar

  • Szánto, D., P. Trinidad, and F. Walsh. 1998. “Evaluation of Carbon Electrodes and Electrosynthesis of Coumestan and Catecholamine Derivatives in the FM01-LC Electrolyser.” Journal of Applied Electrochemistry 20: 251–258.Google Scholar

  • Szpyrkowicz, L., and M. Radaelli. 2006. “Scale-Up of an Electrochemical Reactor for Treatment of Industrial Wastewater with an Electrochemically Generated Redox Mediator.” Journal of Applied Electrochemistry 36: 1151–1156.CrossrefGoogle Scholar

  • Trinidad, P., C. Ponce De Léon, and F.C. Walsh. 2006. “The Application of Flow Dispersion Models to the FM01-LC Laboratory Filter-Press Reactor.” Electrochimica Acta 52: 604–613.CrossrefGoogle Scholar

  • Trinidad, P., and F. C. Walsh. 1996. “Hydrodynamic Behaviour of the FM01-LC Reactor.” Electrochimica Acta 41: 493–502.CrossrefGoogle Scholar

  • Vadthya, P., A. Kumari, C. Sumana, and S. Sridhar. 2015. “Electrodialysis Aided Desalination of Crude Glycerol in the Production of Biodiesel from Oil Feed Stock.” Desalination 362: 133–140.CrossrefWeb of ScienceGoogle Scholar

  • Ling, Y., H. Xu, and X. Chen. 2015. “Continuous Multi-Cell Electrochemical Reactor for Pollutant Oxidation.” Chemical Engineering Science 122: 630–636.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-11-01

Accepted: 2018-03-12

Revised: 2018-01-25

Published Online: 2018-03-23

The authors are grateful to PRODEP for providing financial support to carry out the projects DSA/103.5/16/10242 with CUP: 2II1605 (entitled Simulation and Control of Degradation of Pollutants at Filter-Press-Type Electrochemical Reactor) and DSA/103.5/14/11350 with CUP: 2IE1503, respectively.

Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 10, 20170210, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0210.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in