Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao


IMPACT FACTOR 2018: 1.059
5-year IMPACT FACTOR: 1.156

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.292
Source Normalized Impact per Paper (SNIP) 2018: 0.520

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 5

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Cationic Surfactant-modified Clay as an Adsorbent for the Removal of Synthetic Dyes from Aqueous Solutions

Hamed Biglari
  • Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susana RodríguezíCouto
  • Water and Health Division, Ceit-IK4, Paseo Manuel de Lardizábal 15, 20018 Donostia-San Sebastian, Spain
  • Basque Foundation for Science, IKERBASQUE, Díaz de Haro 3, 48013 Bilbao, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yusef Omidi Khaniabadi
  • Department of Environmental Health, Health Care System of Karoon, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heshmatollah Nourmoradi
  • Biotechnology and Medical Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
  • Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Khoshgoftar / Abdeltif Amrane
  • Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mehdi Vosoughi
  • Department of Environmental Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shirin Esmaeili
  • Department of Environmental Health, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rouhollah Heydari
  • Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, P.O. Box, 68149-89468 Khorramabad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Javad Mohammadi / Rajab Rashidi
  • Corresponding author
  • Nutrition Health Research Center, Department of Occupational Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-26 | DOI: https://doi.org/10.1515/ijcre-2017-0064

Abstract

In this study, the potential of hexadecyl trimethyl ammonium bromide modified montmorillonite (HDTMA-Mt) to remove the synthetic dyes Alizarin Red S (ARS) and Bromocresol Green (BCG) from aqueous media was assessed. The effect of different factors including surfactant loading rate onto the clay, contact time, pH, adsorbent dosage and dye concentrations, on the removal of ARS and BCG in batch systems were investigated. The adsorbent was characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). The equilibrium time for ARS and BCG was reached at 40 and 20 min, respectively, under optimized conditions (i.e. pH = 3, adsorbent dosage=1 g/L, surfactant loading rate onto the clay 70% of the cation exchange capacity (CEC) for ARS and 120% of the CEC for BCG, ARS concentration 50 mg/L and BCG concentration 500 mg/L). The adsorption rate of both dyes fitted the pseudo-second-order kinetic model and the equilibrium data was described by the Freundlich isotherm equation. The maximum monolayer adsorption capacities were equal to 666.6 and 1250 mg/g for ARS and BCG, respectively. Therefore, the HDTMA-Mt can be considered as an effective adsorbent for the removal of ARS and BCG from aqueous solutions.

Keywords: adsorption; montmorillonite; Alizarin Red S; Bromocresol Green

References

  • Abou-Gamra, Z. 2014. “Kinetics of Decolorization of Alizarin Red S in Aqueous Media by Fenton like Mechanism.” European Chemical Bulletin 3:108–112.Google Scholar

  • Ahmad, R., and R. Kumar. 2008. “Comparative Adsorption Study for the Removal of Alizarin Red S and Patent Blue VF by Using Mentha Waste.” Current World Environment 3:261–268.CrossrefGoogle Scholar

  • Aksakal, O., and H. Ucun. 2010. “Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Reactive Red 195) onto Pinus Sylvestris L.” Journal of Hazardous Materials 181:666–672.CrossrefGoogle Scholar

  • Alavi, N., E. Zaree, M. Hassani, A.A. Babaei, G. Goudarzi, A.R. Yari, and M.J. Mohammadi. 2016. “Water quality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS.” Desalination and Water Treatment 57 (50): 23686–23697. DOI: .CrossrefGoogle Scholar

  • Albadarin, A., J. Mo, Y. Glocheux, S. Allen, G. Walker, and C. Mangwandi. 2014. “Preliminary Investigation of Mixed Adsorbents for the Removal of Copper and Methylene Blue from Aqueous Solutions.” Chemical Engineering Journal 255:525–534.CrossrefGoogle Scholar

  • Albadarin, A. B., and C. Mangwandi. 2015. “Mechanisms of Alizarin Red S and Methylene Blue Biosorption onto Olive Stone By-Product: Isotherm Study in Single and Binary Systems.” Journal of Environmental Management 164:86–93.CrossrefGoogle Scholar

  • Allen, S. J., G. Mckey, and K. Y. H. Khadur. 1989. “Intraparticle Diffusion of Basic Dye during Adsorption on to Sphagman Peat.” Environmental Pollution 56:42–39.Google Scholar

  • Almeida, C., N. Debacher, A. Downs, L. Cottet, and C. Mello. 2009. “Removal of Methylene Blue from Colored Effluents by Adsorption on Montmorillonite Clay.” Journal of Colloid and Interface Science 332:46–53.CrossrefGoogle Scholar

  • Banerjee, S., and M. C. Chattopadhyaya. 2013. “Adsorption Characteristics for the Removal of a Toxic Dye, Tartrazine from Aqueous Solutions by a Low Cost Agricultural By-Product.” Arabian Journal of Chemistry. doi:.CrossrefGoogle Scholar

  • Basiri, H., H. Nourmoradi, F. M. Moghadam, K. F. Moghadam, J. Mohammadian, and Y. Omidi-Khaniabadi. 2015. “Removal of Aniline as a Health-Toxic Substance from Polluted Water by Aloe Vera Waste-Based Activated Carbon.” Der Pharma Chemica 7:149–155.Google Scholar

  • Biglari, H., M.J. Mohammadi, P. Morovati, Z. Doosti, Y.O. Khaniabadi, and A. Nadali. 2017. “Removal of manganese from aqueous solutions by G4 Poly-amidoamine dendrimer on poly-aluminium chloride.” Fresenius Environmental Bulletin 26: 6804–6811.Google Scholar

  • Chaari, I., M. Feki, M. Medhioub, J. Bouzid, E. Fakhfakh, and F. Jamoussi. 2009. “Adsorption of a Textile Dye “Indanthrene Blue RS (C.I. Vat Blue 4)” from Aqueous Solutions onto Smectite-Rich Clayey Rock.” Journal of Hazardous Materials 172:1623–1628.CrossrefGoogle Scholar

  • Chatterjee, S., M. W. Lee, and S. H. Woo. 2010. “Adsorption of Congo Red by Chitosan Hydrogel Beads Impregnated with Carbon Nanotubes.” Bioresource Technology 101:1800–1806.CrossrefGoogle Scholar

  • Chen, D., J. Chen, X. Luan, H. Ji, and Z. Xia. 2011a. “Characterization of Anion–Cationic Surfactants Modified Montmorillonite and Its Application for the Removal of Methyl Orange.” Chemical Engineering Journal 171:1150–1158.CrossrefGoogle Scholar

  • Chen, Z.-X., X.-Y. Jin, Z. Chen, M. Megharaj, and R. Naidu. 2011b. “Removal of Methyl Orange from Aqueous Solution Using Bentonite-Supported Nanoscale Zero-Valent Iron.” Journal of Colloid and Interface Science 363:601–607.CrossrefGoogle Scholar

  • Cheng, Z., L. Zhang, X. Guo, X. Jiang, and T. Li. 2015. “Adsorption Behavior of Direct Red 80 and Congo Red onto Activated Carbon/Surfactant: Process Optimization, Kinetics and Equilibrium.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137:1126–1143.CrossrefGoogle Scholar

  • Chiou, M. S., and G. S. Chuang. 2006. “Competitive Adsorption of Dye Metanil Yellow and RB15 in Acid Solutions on Chemically Cross-Linked Chitosan Bead.” Chemosphere 62:731–740.CrossrefGoogle Scholar

  • Davila-Jimenez, M. M., M. P. Elizalde-Gonzalez, and A. A. Pelaez-Cid. 2005. “Adsorption Interaction between Natural Adsorbents and Textile Dyes in Aqueous Solution.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 254:107–114.CrossrefGoogle Scholar

  • De Luna, M., E. Flores, D. Genuino, C. Futalan, and M. Wan. 2013. “Adsorption of Eriochrome Black T (EBT) Dye Using Activated Carbon Prepared from Waste Rice hulls-Optimization, Isotherm and Kinetic Studies.” Journal of the Taiwan Institute of Chemical Engineers 44:646–653.CrossrefGoogle Scholar

  • Debnath, S., N. Ballav, A. Maity, and K. Pillay. 2015. “Development of a Polyaniline-Lignocellulose Composite for Optimaladsorption of Congo Red.” International Journal of Biological Macromolecules 75:199–209.CrossrefGoogle Scholar

  • Demarchi, C., M. Campos, and C. Rodrigues. 2013. “Adsorption of Textile Dye Reactive Red 120 by the chitosan-Fe (Iii)-Crosslinked: Batch and Fixed-Bed Studies.” Journal of Environmental Chemical Engineering 1:1350–1358.CrossrefGoogle Scholar

  • Dong, K., F. Qiu, X. Guo, J. Xu, D. Yang, and K. He. 2013. “Adsorption Behavior of Azo Dye Eriochrome Black-T from Aqueous Solution by β-Cyclodextrins/Polyurethane Foam Material.” Polymer-Plastics Technology and Engineering 52:452–460.CrossrefGoogle Scholar

  • Du, Q., J. Sun, Y. Li, X. Yang, X. Wang, Z. Wang, and L. Xia. 2014. “Highly Enhanced Adsorption of Congo Red onto Graphene Oxide/Chitosan Fibers by Wet-Chemical Etching off Silica Nanoparticles.” Chemical Engineering Journal 245:99–106.CrossrefGoogle Scholar

  • Elmoubarki, R., et al. 2015. “Adsorption of Textile Dyes on Raw and Decanted Moroccan Clays: Kinetics, Equilibrium and Thermodynamics.” Water Resources and Industry 9:16–29.CrossrefGoogle Scholar

  • Feng, F., G. Ziwei, G. Lingxiang, and L. Dongsheng. 2011. “Effective Adsorption of Anionic Dye, Alizarin Red S, from Aqueous Solutions on Activated Clay Modified by Iron Oxide.” Industrial and Engineering Chemistry Research 50:9712–9717.CrossrefGoogle Scholar

  • Fu, F., Z. Gao, L. Gao, and D. Li. 2011. “Effective Adsorption of Anionic Dye, Alizarin Red S, from Aqueous Solutions on Activated Clay Modified by Iron Oxide.” Industrial Engineering and Chemical Researches 50:9712–9717.CrossrefGoogle Scholar

  • Gautam, R., A. Mudhoo, and M. Ghattopadhyaya. 2013. “Kinetic, Equilibrium, Thermodynamic Studies and Spectroscopic Analysis of ARS Removal by Mustard Husk.” Journal Environmental Chemical Engineering 1:1283–1291.CrossrefGoogle Scholar

  • Ghaedi, M., H. Khajesharifi, A. H. Yadkuri, M. Roosta, R. Sahraei, and A. Daneshfar. 2012. “Cadmium Hydroxide Nanowire Loaded on Activated Carbon as Efficient Adsorbent for Removal of Bromocresol Green.” Spectrochimica Acta Part A 86:62–68.CrossrefGoogle Scholar

  • Ghasemi, F, S Dobaradaran, M Keshtkar, M.J Mohammadi, H Ghaedi, et al. 2016. “Biosorption of MN (II) from aqueous solution by Sargassum hystrixalgae obtained from the Persian Gulf: biosorption isotherm and kinetic.” International Journal of Pharmacy and Technology 8: 18227–18238.Google Scholar

  • Gholivand, M., Y. Yamini, M. Dayeni, S. Seidi, and E. Tahmasebi. 2015. “Adsorptive Removal of Alizarin Red S and Alizarin Yellow GG from Aqueous Solutions Using Polypyrrole-Coated Magnetic Nanoparticles.” Journal of Environmental Chemical Engineering 3:529–540.CrossrefGoogle Scholar

  • Hassani, G., A.A. Babaei, A. Takdastan, M. Shirmardi, F. Yousefian, and M.J. Mohammadi. 2016. “Occurrence and fate of 17β-estradiol in water resources and wastewater in Ahvaz, Iran.” Global Nest 18: 855–866.Google Scholar

  • Jadhava, H., S. Khetre, and S. Bamane. 2011. “Removal of Alizarin red-S from Aqueous Solution by Adsorption on Nanocrystalline Cu0.5Zn0.5Ce3O5.” Der Chemica Sinica 2:68–75.Google Scholar

  • Jiang, R., Y.-Q. Fu, H.-Y. Zhu, J. Yao, and L. Xiao. 2012. “Removal of Methyl Orange from Aqueous Solutions by Magnetic Maghemite/Chitosan Nanocomposite Films: Adsorption Kinetics and Equilibrium.” Journal of Applied Polymer Science 125:540–549.CrossrefGoogle Scholar

  • Kadhim, L. 2012. “Granite as an Adsorption Surface for the Removal of Bromo Phenol Red, Bromo Cresol Green and Leishman’s Stain from Aqueous Solutions.” Journal of Basrah Researches 38:106–116.Google Scholar

  • Kazembeigi, F., et al. 2014. “Removal of Methylen Blue from Aqueous Solutionsusing Raw and Modified Ruce Husk.” The Veliger 53:1–7.Google Scholar

  • Kıranşan, M., R.D.C. Soltani, A. Hassani, S. Karaca, and A. Khataee. 2014. “Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye.” Journal of the Taiwan Institute of Chemical Engineers 45 (5): 2565–2577. DOI: .CrossrefGoogle Scholar

  • Li, D., L. Qing, M. Shuanglong, C. Zhixian, and Z. Ling. 2011. “Adsorption of Alizarin Red S onto Nano-Sized Silica Modified with I-Aminopropyltriethoxysilane.” Adsorption Science and Technology 29:283.Google Scholar

  • Liu, Q., B. Yang, L. Zhang, and R. Huang. 2015. “Adsorption of an Anionic Azo Dye by Cross-Linked Chitosan/Bentonite Composite.” International Journal of Biological Macromolecules 72:1129–1135.CrossrefGoogle Scholar

  • Moeinpour, F., A. Alimoradi, and M. Kazemi. 2014. “Efficient Removal of Eriochrome black-T from Aqueous Solution Using NiFe2O4 Magnetic Nanoparticles.” Journal of Environmental Health Science & Engineering 12:2–7.Google Scholar

  • Mohammadi, M. J., Y. O. Khaniabadi, H. Basiri, A. Amrane, H. Nourmoradi, M. Momtazan, et al. 2017b. “Montmorillonite as Adsorbent for the Removal of Methyl Red from Aqueous Solution.” Fresenius Environmental Bulletin 26:4088–4096.Google Scholar

  • Mohammadi, M. J., A. Takdastan, S. Jorfi, A. Neisi, M. Farhadi, A. R. Yari, et al. 2017a. “Electrocoagulation Process to Chemical and Biological Oxygen Demand Treatment from Carwash Grey Water in Ahvaz Megacity.” Iran Data in Brief 11:634–639.CrossrefGoogle Scholar

  • Moussavi, G., R. Rashidi, and A. Khavanin. 2013. “The efficacy of GAC/MgO composite for destructive adsorption of benzene from waste air stream.” Chemical Engineering Journal 228: 741–747.CrossrefGoogle Scholar

  • Monsalvo, V., A. Mohedano, and J. Rodriguez. 2011. “Activated Carbons from Sewage Sludge Application to Aqueous-Phase Adsorption of 4-Chlorophenol.” Desalination 277:377–382.CrossrefGoogle Scholar

  • Nadafi, K., M. Vosoughi, A. Asadi, M. O. Borna, and M. Shirmardi. 2014. “Reactive Red 120 Dye Removal from Aqueous Solution by Adsorption on Nano-Alumina.” Journal of Water Chemistry and Technology 36:125–133.CrossrefGoogle Scholar

  • Neisi, A., M.J. Mohammadi, A. Takdastan, A.A. Babaei, A.R. Yari, and M. Farhadi. 2017. “Assessment of tetracycline antibiotic removal from hospital wastewater by extended aeration activated sludge.” Desalination and water treatment 80: 380–386. DOI: .CrossrefGoogle Scholar

  • Niri, M. V., A. H. Mahvi, M. Alimohammadi, M. Shirmardi, H. Golastanifar, M. J. Mohammadi, et al. 2015. “Removal of Natural Organic Matter (NOM) from an Aqueous Solution by NaCl and Surfactant-Modified Clinoptilolite.” Journal of Water and Health 13:394–405.CrossrefGoogle Scholar

  • Nourmoradi, H., et al. 2016. “Surfactant Modified Montmorillonite as a Low Cost Adsorbent for 4 Chlorophenol: Equilibrium, Kinetic and Thermodynamic Study.” Journal of the Taiwan Institute of Chemical Engineers 59:244–251.CrossrefGoogle Scholar

  • Nourmoradi, H., M. Nikaeen, and M. Khiadani. 2012. “Removal of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) from Aqueous Solutions by Montmorillonite Modified with Nonionic Surfactant: Equilibrium, Kinetic and Thermodynamic Study.” Chemical Engineering Journal 191:341–348.CrossrefGoogle Scholar

  • Omidi-Khaniabadi, Y., H. Basiri, H. Nourmoradi, M. J. Mohammadi, A. R. Yari, S. Sadeghi, and A. Amrane. 2017a. “Adsorption of Congo Red Dye from Aqueous Solutions by Montmorillonite as a Low-Cost Adsorbent.” International Journal of Chemical Reactor Engineering. doi:.CrossrefGoogle Scholar

  • Omidi-Khaniabadi, Y., R. Heydari, H. Nourmoradi, H. Basiri, and H. Basiri. 2016a. “Low-Cost Sorbent for the Removal of Aniline and Methyl Orange from Liquid-Phase: Aloe Vera Leaves Wastes.” Journal of the Taiwan Institute of Chemical Engineers 68:90–98. doi:.CrossrefGoogle Scholar

  • Omidi-Khaniabadi, Y., A. Jafari, H. Nourmoradi, F. Taheri, and S. Saeedi. 2015. “Adsorption of 4-Chlorophenol from Aqueous Solution Using Activated Carbon Synthesized from Aloe Vera Green Wastes.” Journal of Advances in Environmental Health Research 3:120–129.Google Scholar

  • Omidi-Khaniabadi, Y., B. Kamarehei, H. Nourmoradi, G. Goudarzi, M. Jourvand, H. Basiri, and S. Heidari. 2016b. “Hexadecyl Trimethyl Ammonium Bromide-Modified Montmorillonite as a Low-Cost Sorbent for the Removal of Methyl Red from Liquid-Medium.” IJE Transactions A: Basics 29: 61–69.Google Scholar

  • Qiu, M., S. Xiong, G. Wang, J. Xu, P. Luo, S. Ren, and Z. Wang. 2015. “Kinetic for Adsorption of Dye Methyl Orange by the Modified Activated Carbon from Rice Husk.” Advance Journal of Food Science and Technology 9:140–145.CrossrefGoogle Scholar

  • Rehman, R., T. Mahmud, J. Anwar, M. Salman, U. Shafique, and A. F. Waheed-uz-Zaman. 2011. “Removal of Alizarin Red S (Dye) from Aqueous Media by Using Alumina as an Adsorbent.” Journal of the Chemical Society of Pakistan 33:228–232.Google Scholar

  • Roosta, M., M. Ghaedi, and M. Mohammadi. 2016. “Removal of Alizarin Red S by Gold Nanoparticles Loaded on Activated Carbon Combined with Ultrasound Device: Optimization by Experimental Design Methodology.” Powder Technology 267:134–144.Google Scholar

  • Samusolomon, J., and P. Martin Devaprasath. 2011. “Removal of Alizarin Red S (Dye) from Aqueous Media by Using Cynodon Dactylon as an Adsorbent.” Journal of Chemical and Pharmaceutical Research 3:478–490.Google Scholar

  • Shirmardi, M., A. H. Mahvi, B. Hashemzadeh, A. Naeimabadi, G. Hassani, and M. V. Niri. 2013. “The Adsorption of Malachite Green (MG) as a Cationic Dye onto Functionalized Multi Walled Carbon Nanotubes.” Korean Journal of Chemical Engineering 30:1603–1608.CrossrefGoogle Scholar

  • Shokrollahi, A., A. Alizadeh, Z. Malekhosseini, and M. Ranjbar. 2011. “Removal of Bromocresol Green from Aqueous Solution via Adsorption on Ziziphus Nummularia as a New, Natural, and Low-Cost Adsorbent: Kinetic and Thermodynamic Study of Removal Process.” Journal of Chemical and Engineering Data 15:3738–3746.Google Scholar

  • Silva, M., M. Oliveira, M. Avelino, M. Fonseca, R. Almeida, and E. Filho. 2012. “Adsorption of an Industrial Anionic Dye by modified-KSF-montmorillonite: Evaluation of the Kinetic, Thermodynamic and Equilibrium Data.” Chemical Engineering Journal 203:259–268.CrossrefGoogle Scholar

  • Su, J., H. Lin, Q. Wang, Z. Xie, and Z. Chen. 2011. “Adsorption of Phenol from Aqueous Solutions by Organomontmorillonite.” Desalination 269:163–169.CrossrefGoogle Scholar

  • Tangaraj, V., J.-M. Janot, M. Jaber, M. Bechelany, and S. Balme. 2017. “Adsorption and Photophysical Properties of Fluorescent Dyes over Montmorillonite and Saponite Modified by Surfactant.” Chemosphere 184:1355–1361.CrossrefGoogle Scholar

  • Tchuifon, D., S. Anagho, E. Njanja, J. Ghogomu, N. Ndifor-Angwafor, and T. Kamgaing. 2014. “Equilibrium and Kinetic Modeling of Methyl Orange Adsorption from Aqueous Solution Using Rice Husk and Egussi Peeling.” International Journal of Chemical Sciences 12:741–761.Google Scholar

  • Wagh, P., and V. Shrivastava. 2014. “Removal of Alizarin Red-S Dye from Aqueous Solution by Sorption on Coconut Shell Activated Carbon.” Journal of Scientific Research & Reports 3:2197–2215.CrossrefGoogle Scholar

  • Wang, CC., L.-C. Juang, C.-K. Lee, T.-C. Hsu, J.-F. Lee, and H.-P. Chao. 2004. “Effects of Exchanged Surfactant Cations on the Pore Structure and Adsorption Characteristics of Montmorillonite.” Journal of Colloid and Interface Science 280:27–35.CrossrefGoogle Scholar

  • Xiao, S., Z. Wang, H. Ma, H. Yang, and W. Xu. 2013. “Effective Removal of Dyes from Aqueous Solution Using Ultrafine Silk Fibroin Powder.” Advanced Powder Technology 25 (2): 574–581.Google Scholar

  • Zhang, Z. Z., D. L. Sparks, and N. C. Scrivner. 1993. “Sorption and Desorption of Quaternary Amine Cations on Clays.” Environmental Science & Technology 27:1625–1631. doi:.CrossrefGoogle Scholar

About the article

Received: 2017-04-25

Accepted: 2018-01-05

Revised: 2017-11-22

Published Online: 2018-01-26


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 5, 20170064, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0064.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dan Liu, Jing Yuan, Jiawei Li, and Guohua Zhang
ACS Omega, 2019, Volume 4, Number 7, Page 12680
[2]
R. Rashidi, G. Moussavi, A. Khavanin, and A. Ghaderpoori
International Journal of Environmental Science and Technology, 2019
[3]
Ghader Zeydouni, Susana Rodriguez Couto, Heshmatollah Nourmoradi, Hassan Basiri, Patrick Amoatey, Shirin Esmaeili, Sedigheh Saeidi, Fariba Keishams, Mohammad Javad Mohammadi, and Yusef Omidi Khaniabadi
Toxin Reviews, 2018, Page 1

Comments (0)

Please log in or register to comment.
Log in