Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 7

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Hydrogen Generation in an Annular Micro-Reactor: An Experimental Investigation and Reaction Modelling by Shrinking Core Model (SCM)

Shyam P. Tekade / Diwakar Z. Shende
  • Corresponding author
  • Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kailas L. Wasewar
  • Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-11 | DOI: https://doi.org/10.1515/ijcre-2017-0202

Abstract

Hydrogen can be one of the key elements as source of future energy requirement. Water splitting reaction is an important route for generation of hydrogen as maximum fraction of hydrogen constitute in water. The present work describes the experimental investigation for generation of hydrogen through water splitting reaction in flow conditions with the aid of metal aluminum and sodium hydroxide as an activator. The hydrogen generation through water splitting reaction at various concentrations of NaOH, viz. 0.5 N and 1 N and the flow rates ranging from 0.2 to 10 ml/min was studied. The yield of hydrogen generated is reported for each NaOH concentration and flow rate. The yield of hydrogen generated at all the considered concentrations and flow rates was found to be greater than 98 %. The shrinking core model has been modified and developed for predicting the conversion of aluminum in the reaction system as per the prevailing conditions and rate controlling mechanism. The RMSE value of predicted conversion of Al was found to be 0.0351 which signify that the model agrees well with the experimental data.

Keywords: water splitting; flow conditions; yield; hydrogen generation; rate controlling mechanism

References

  • Adnan, M., D. Ibrahim, and A. Murat. 2006. “Green Energy Strategies for Sustainable Development.” Energy Policy 34: 3623–3633.CrossrefGoogle Scholar

  • Akira, Y., T. Toshihiro, H. Kazuhito, and N. Ryuhei. 2016. “Water Splitting Using Electrochemical Approach, Solar to Chemical Energy Conversion.” Lecture Notes in Energy 32: 175–189.CrossrefGoogle Scholar

  • Alon, G., E. Shani, and R. Valery. 2015. “Compact Electric Energy Storage for Marine Vehicles Using on-Board Hydrogen Production.” Journal of Shipping and Ocean Engineering 5: 151–158.Google Scholar

  • Bin, Y., T. Sicong, and L. Jing. 2016. “Dynamic Hydrogen Generation Phenomenon of Aluminum Fed Liquid Phase Ga–In Alloy inside NaOH Electrolyte.” International Journal of Hydrogen Energy 41: 1453–1459.CrossrefGoogle Scholar

  • Boukerche, I., S. Djerad, L. Benmansour, L. Tifouti, and K. Saleh. 2014. “Degradability of Aluminum in Acidic and Alkaline Solutions.” Corrosion Science 78: 343–352.CrossrefGoogle Scholar

  • Charles, TD., and DS. William. 1990. “The Chemistry of Aluminum in the Environment.” Environmental Geochemistry and Health 12: 28–49.CrossrefGoogle Scholar

  • Cuiping, W., Y. Tao, L. Yuheng, R. Jingjing, Y. Shuiyuan, and L. Xingjun. 2014. “Hydrogen Generation by the Hydrolysis of Magnesium-Aluminum-Iron Material in Aqueous Solutions.” International Journal of Hydrogen Energy 39: 10843–10852.CrossrefGoogle Scholar

  • CzechT, E., and Troczynski. 2010. “Hydrogen Generation through Massive Corrosion of Deformed Aluminum in Water.” International Journal of Hydrogen Energy 35: 1029–1037.CrossrefGoogle Scholar

  • Dae-Young, K., R. Hong-Youl, K. Seung-Hyun, P. Kyoung-Tae, C. Seong-Seock, H. Moon-Hee, C. Churl-Hee, B. Kie-Seo, C. Young-Min, K. Chang-Ho, and L. Jong-Hyeon. 2016. “Demonstration of a High Throughput On-Board Hydrogen Generation Reactor System Using Aluminum Coil as Fuel for a Vehicle.” International Journal of Green Energy 13: 573–579.CrossrefGoogle Scholar

  • Das, LM. 1996. “Hydrogen-Oxygen Reaction Mechanism and Its Implication to Hydrogen Engine Combustion.” International Journal of Hydrogen Energy 21: 703–715.CrossrefGoogle Scholar

  • David, E., and J. Kopac. 2012. “Hydrolysis of Aluminum Dross Material to Achieve Zero Hazardous Waste.” Journal of Hazardous Materials 209–210: 501–509.Google Scholar

  • Deng, ZY., JMF. Ferreira, and Y. Sakka. 2008. “Hydrogen-Generation Materials for Portable Applications.” J Am Ceram Soc 91: 3825–3834.CrossrefGoogle Scholar

  • Er-Dong, W., S. Peng-Fei, D. Chun-Yu, and W. Xiao-Rui. 2008. “A Mini-Type Hydrogen Generator from Aluminum for Proton Exchange Membrane Fuel Cells.” Journal of Power Sources 181: 144–148.CrossrefGoogle Scholar

  • Ezgi, D., Tekkaya, and Y Yuda. 2016. “Mesoporous MCM-41 Material for Hydrogen Storage: A Short Review.” International Journal of Hydrogen Energy 41: 9789–9795.CrossrefGoogle Scholar

  • Fan, L., Z. Baozhong, S. Yunlan, and T. Wei. 2016. “Hydrogen Generation by Means of the Combustion of Aluminum Powder/Sodium Borohydride in Steam.” International Journal of Hydrogen Energy 42: 3804–3812.Google Scholar

  • George, C., D. Mildred, and B. Michelle. 2004. “The Hydrogen Economy.” Physics Today 57: 39–45.CrossrefGoogle Scholar

  • Huihu, W., C. Ying, D. Shijie, L. Zhifeng, Z. Qingbiao, L. Ping, and Zhixiong Xie. 2013. “Investigation on Hydrogen Production Using Multicomponent Aluminum Alloys at Mild Conditions and Its Mechanism.” International Journal of Hydrogen Energy 38: 1236–1243.CrossrefGoogle Scholar

  • Ibrahim, D., and Canan Acar. 2016. “A Review on Potential Use of Hydrogen in Aviation Applications.” Int. J. Sustainable Aviation 2: 74–100.CrossrefGoogle Scholar

  • Jean, PM. 1999. “Aluminum Production Using High-Temperature Solar Process Heat.” Solar Energy 66: 133–142.CrossrefGoogle Scholar

  • Jeffrey, TZ., MW. Jerry, AK. Robert, and C. Go. 2011. “Liquid Phase-Enabled Reaction of Al-Ga and Al-Ga-In-Sn Alloys with Water.” International Journal of Hydrogen Energy 36: 5271–5279.CrossrefGoogle Scholar

  • Jiajun, W., C. Shaohua, L. Qunxiang, and Y. Jinlong. 2016. “Anatase TiO2 Codoping with Sulfur and Acceptor IIB Metals for Water Splitting.” International Journal of Hydrogen Energy 41: 13050–13057.CrossrefGoogle Scholar

  • Jiawen, R., A. Markus, and F. Tim-Patrick. 2015. “Efficient Water Splitting Using a Simple Ni/N/C Paper Electrocatalyst.” Adv. Energy Mater. 5: 1–6.Google Scholar

  • Jingke, M., K. Zhenye, Y. Gaoqiang, TR. Scott, AC. David, JT. Todd, B. Johney, J. Green, and Z. Feng-Yuan. 2016. “Thin Liquid/Gas Diffusion Layers for High-Efficiency Hydrogen Production from Water Splitting.” Applied Energy 177: 817–822.CrossrefGoogle Scholar

  • Jorge, M., S. Lluís, MC. Angélica, M. Maria, and Juan Casado. 2011. “Hydrogen Generation by Aluminum Corrosion in Aqueous Alkaline Solutions of Inorganic Promoters: The AlHidrox Process.” Energy 36: 2493–2501.CrossrefGoogle Scholar

  • Jung, CR., K. Arunabha, B. Ku, JH. Gil, HR. Lee, and JH. Jang. 2008. “Hydrogen from Aluminium in a Flow Reactor for Fuel Cell Applications.” Journal of Power Sources 175: 490–494.CrossrefGoogle Scholar

  • Korosh, M., and A. Babak. 2010. “Enhancement of Hydrogen Generation Rate in Reaction of Aluminum with Water.” International Journal of Hydrogen Energy 35: 5227–5232.CrossrefGoogle Scholar

  • Kwang, E., JK. Min, O. SeKwon, C. EunAe, and K. HyukSang. 2011. “Design of Ternary Al-Sn-Fe Alloy for Fast On-Board Hydrogen Production, and Its Application to PEM Fuel Cell.” International Journal of Hydrogen Energy 36: 11825–11831.CrossrefGoogle Scholar

  • Lang, Y., R. Arnepalli, and A. Tiwari. 2011. “A Review on Hydrogen Production: Methods, Materials and Nanotechnology.” Journal of Nanoscience and Nanotechnology 11: 3719–3739.CrossrefGoogle Scholar

  • Levenspiel, Octave 1999. Chemical Reaction Engineering., 3rd ed. Hoboken: John Wiley and SonsGoogle Scholar

  • Liang, J., L.J. Gao, N.N. Miao, Y.J. Chai, N. Wang, and Q. Song. 2016. “Hydrogen Generation by Reaction of Al–M (M = Fe,Co,Ni) with Water.” Energy 113: 282–287.CrossrefGoogle Scholar

  • Lluis, S., MC. Angelica, M. Jorge, and M. Maria. 2009. “Hydrogen Generation by Aluminum Corrosion in Seawater Promoted by Suspensions of Aluminum Hydroxide.” International Journal of Hydrogen Energy 34: 8511–8518.CrossrefGoogle Scholar

  • Louis, S., and Z. Andreas. 2001. “Hydrogen Storage Materials for Mobile Applications.” Nature 414: 353–358.CrossrefGoogle Scholar

  • Magdalena, M., and TN. Veziroglu. 2005. “The Properties of Hydrogen as Fuel Tomorrow in Sustainable Energy System for a Cleaner Planet.” International Journal of Hydrogen Energy 30: 795–802.CrossrefGoogle Scholar

  • Min, JK., SE. Kwang, YK. Jae, A. Eun, and SK. Hyuk. 2012. “On-Board Hydrogen Production by Hydrolysis from Designed Al-Cu Alloys and the Application of This Technology to Polymer Electrolyte Membrane Fuel Cells.” Journal of Power Sources 217: 345–350.CrossrefGoogle Scholar

  • Nicola, A., and B. Vincenzo. 2011. “The Hydrogen Issue.” Chem Sus Chem 4: 21–36.CrossrefGoogle Scholar

  • Paul, D., S. Demitrios, and LD. Edward. 2011. “Hydrogen Production by Reacting Water with Mechanically Milled Composite Aluminum-Metal Oxide Powders.” International Journal of Hydrogen Energy 36: 4781–4791.CrossrefGoogle Scholar

  • Pavlos, N., and PA. Andreas. 2017. “Comparative Overview of Hydrogen Production Processes.” Renewable and Sustainable Energy Reviews 67: 597–611.CrossrefGoogle Scholar

  • Porciúncula, CB., NR. Marcilio, IC. Tessaro, and M. Gerchmann. 2012. “Production of Hydrogen in the Reaction between Aluminum and Water in the Presence of NaOH and KOH.” Brazilian Journal of Chemical Engineering 29: 337–348.CrossrefGoogle Scholar

  • Sanjib, S., H. Paramita, M. Harahari, B. Aparajita, S. Debasis, KS. Ashis, K. Sukumar, and B. Chinmoy. 2016. “Benign Role of Bi on Electrodeposited Cu2O Semiconductor Towards Photo-Assisted H2 Generation from Water.” J. Mater. Chem. A 4: 9244–9252.CrossrefGoogle Scholar

  • Saxena, RC., D. Seal, S. Kumar, and HB. Goyal. 2008. “Thermo-Chemical Routes for Hydrogen Rich Gas from Biomass: A Review.” Renew Sustain Energy Rev 12: 1909–1927.CrossrefGoogle Scholar

  • Shani, E., R. Valery, and G. Alon (2013). High Energy Density Storage Using In-Situ Hydrogen Production, Proceedings of 11th International Energy Conversion Engineering Conference.Google Scholar

  • Shani, E., R. Valery, and G. Alon. 2014. “Study of Hydrogen Production and Storage Based on Aluminum-Water Reaction.” International Journal of Hydrogen Energy 39: 6328–6334.CrossrefGoogle Scholar

  • Shani, E., R. Valery, and G. Alon. 2015. “Electric Energy Storage Using Aluminum and Water for Hydrogen Production On-Demand.” International Journal of Applied Science and Technology 5: 112–121.Google Scholar

  • Shani, E., R. Valery, and G. Alon. 2016a. “Urine and Aluminum as a Source for Hydrogen and Clean Energy.” International Journal of Hydrogen Energy. 41: 11909–11913.CrossrefGoogle Scholar

  • Shani, E., R. Valery, and G. Alon. 2016b. “Combined Energy Production and Waste Management in Manned Spacecraft Utilizing On-Demand Hydrogen Production and Fuel Cells.” Acta Astronautica 128 (2016): 580–583.CrossrefGoogle Scholar

  • Susana, SM., LB. Wendy, A. Alberto, G. Alvarez, and PJ. Sebastian. 2005. “Recycling of Aluminum to Produce Green Energy.” Solar Energy Materials & Solar Cells 88: 237–243.CrossrefGoogle Scholar

  • Sushant, K 2015 . “Clean Hydrogen Production Methods, Sodium Hydroxide for Clean Hydrogen Production.” Springer Briefs in Energy 1: 20– 21.Google Scholar

  • Takehito, H., T. Masato, H. Masaaki, and A. Tomohiro. 2005. “Hydrogen Production from Waste Aluminum at Different Temperatures, with LCA.” Materials Transactions 46: 1052–1057.CrossrefGoogle Scholar

  • Tzimas, E., C. Filiou, SD. Peteves, and JB. Veyret. 2003. Hydrogen Storage: State-Of- The-Art and Future Perspective, European Commission Document. The Netherlands: Institute For Energy Pattern.Google Scholar

  • Valery, R., and G. Alon. 2010. “Application of Activated Aluminum Powder for Generation of Hydrogen from Water.” International Journal of Hydrogen Energy 35: 10898–10904.CrossrefGoogle Scholar

  • Victor, AG., and TN. Veziroglub. 2001. “From Hydrogen Economy to Hydrogen Civilization.” International Journal of Hydrogen Energy 26: 909–915.CrossrefGoogle Scholar

  • Vlaskin, MS., EI. Shkolnikov, and AV. Bersh. 2011. “Oxidation Kinetics of Micron-Sized Aluminum Powder in High-Temperature Boiling Water.” International Journal of Hydrogen Energy 36: 6484–6495.CrossrefGoogle Scholar

  • Wang, HZ., DYC. Leung, MKH. Leung, and M. Ni. 2009. “A Review on Hydrogen Production Using Aluminum and Aluminum Alloys.” Renewable and Sustainable Energy Reviews 13: 845–853.CrossrefGoogle Scholar

  • Wei, ZS., HL. Wen, and D. Zhen-Yan. 2012. “Reaction of Al Powder with Water for Hydrogen Generation under Ambient Condition.” International Journal of Hydrogen Energy 37: 13132–13140.CrossrefGoogle Scholar

  • Xiani, H., G. Tong, P. Xiaole, W. Dong, L. Chunju, Q. Laishun, and Yuexiang Huang. 2013. “A Review: Feasibility of Hydrogen Generation from the Reaction between Aluminum and Water for Fuel Cell Applications.” Journal of Power Sources 229: 133–140.CrossrefGoogle Scholar

  • Xinchen, W., M. Kazuhiko, T. Arne, T. Kazuhiro, X. Gang, MC. Johan, D. Kazunari, and A. Markus. 2009. “A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light.” Nature Materials 8: 76–80.CrossrefGoogle Scholar

  • Xingyu, C., Z. Zhongwei, H. Mingming, and W. Dezhi. 2013. “Research of Hydrogen Generation by the Reaction of Al-Based Materials with Water.” Journal of Power Sources 222: 188–195.CrossrefGoogle Scholar

  • Yang, Y., G. Wei-Zhuo, D. Zhen-Yan, and Z. Jian-Ge. 2014. “Hydrogen Generation by the Reaction of Al with Water Promoted by an Ultrasonically Prepared Al(OH)3 Suspension.” International Journal of Hydrogen Energy 39: 18734–18742.CrossrefGoogle Scholar

  • Yanyan, J., S. Jie, M. Haixia, D. Yamin, C. Yujun, and W. Ning. 2014. “Hydrogen Generation Using a Ball-Milled Al/Ni/NaCl Mixture.” Journal of Alloys and Compounds 588: 259–264.CrossrefGoogle Scholar

  • Yu-Kuang, C., T. Hsin-Te, L. To-Ying, and W. Hong-Wen. 2014. “Rapid Hydrogen Generation from Aluminum–Water System by Adjusting Water Ratio to Various Aluminum/Aluminum Hydroxide.” Int J Energy Environ Eng. 5 (87): 1–6.Google Scholar

  • Zhen-Yan, D., T. Ye-Bin, Z. Li-Li, S. Yoshio, and Y. Jinhua. 2010. “Effect of Different Modification Agents on Hydrogen-Generation by the Reaction of Al with Water.” International Journal of Hydrogen Energy 35: 9561–9568.CrossrefGoogle Scholar

  • Zuttel, A. 2003. “Materials for Hydrogen Storage.” Materials Today 6: 24–33.CrossrefGoogle Scholar

About the article

Received: 2017-10-25

Accepted: 2018-03-12

Revised: 2017-12-15

Published Online: 2018-04-11


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 7, 20170202, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0202.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in