Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 7

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Synthesis and Modification of Zeolite ZSM-5 Catalyst with Solutions of Calcium Carbonate (CaCO3) and Sodium Carbonate (Na2CO3) for Methanol to Gasoline Conversion

Ehsan Kianfar / Mahmoud Salimi / Vahid Pirouzfar
  • Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Behnam Koohestani
Published Online: 2018-04-05 | DOI: https://doi.org/10.1515/ijcre-2017-0229

Abstract

In this article, the ZSM-5 catalyst was used as the base catalyst and its structure was modified for conducting Methanol to Gasoline reactions. ZSM-5 catalyst reacts to the solutions with diverse concentrations of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3), and consequently, some changes were applied to its internal structure. Thus, Methanol to Gasoline (MTG) process was carried out under pressure of 1 atm, the temperature of 400°C, and specific surface area of 300 m2g-1 on synthetic zeolite ZSM-5 catalyst by a fixed-bed reactor. Structure and morphology of the synthesized catalyst were investigated by XRD, FT-IR, SEM, XRF and BET analyses. The effect of CaCO3 and Na2CO3 solutions used for catalyst modification on the distribution of hydrocarbon products were studied and compared to ZSM-5 catalyst. The result of catalyst activity evaluation tests shows that the modified catalyst with a 0.1 molar solution of CaCO3 and Na2CO3 provides the highest selectivity and efficiency compared to the hydrocarbons in boiling point range of C6+ gasoline.

Keywords: modification of ZSM-5 catalyst; structure and morphology; Methanol to Gasoline

References

  • Amereh, M., M. Haghighi, and P. Estifaee. 2018. “The Potential Use of HNO3- Treated Clinoptilolite in the Preparation of Pt/CeO2-Clinoptilolite Nanostructured Catalyst Used in Toluene Abatement from Waste Gas Stream at Low Temperature.” Arabian Journal of Chemistry 11: 81–90.CrossrefWeb of ScienceGoogle Scholar

  • Aghaei, E., and M. Haghighi. 2014. “Enhancement of Catalytic Lifetime of Nanostructured SAPO-34 in Conversion of Biomethanol to Light Olefins.” Microporous and Mesoporous Materials 196: 179–190.Web of ScienceCrossrefGoogle Scholar

  • Al-Yassir, N., and R. Le Van Mao. 2006. “Physico-Chemical Properties of Mixed Molybdenum and Cerium Oxides Supported on Silica-Alumina and Their Use as Catalysts in the Thermal-Catalytic Cracking (TCC) of n-Hexane.” Applied Catalysis A: General 305: 130.CrossrefGoogle Scholar

  • Bi, Y., Y. Wang, Y. Wei, Y. He, Z. Yu, Z. Liu, and L. Xu. 2014. “Toluene with Methanol Over the Modified HZSM‐5 Catalyst.” ChemCatChem 6: 713–718.CrossrefWeb of ScienceGoogle Scholar

  • Bjorgen, M., S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, and U. Olsbye. 2007. “Conversion of Methanol to Hydrocarbons over Zeolite H-ZSM-5: On the Origin of the Olefinic Species.” Journal of Catalysis 249: 195–207.Web of ScienceCrossrefGoogle Scholar

  • Du, X., L. J. France, V. L. Kuznetsov, T. Xiao, P. P. Edwards, H. Al Megren, and A. Bagabas. 2014. “Dry Reforming of Methane over ZrO2-Supported Co–Mo Carbide Catalyst.” Applications Petrochem Researcher 4: 137–144.CrossrefGoogle Scholar

  • Estifaee, P., M. Haghighi, A. A. Babaluo, N. Rahemi, and M. F. Jafari. 2014. “The Beneficial Use of Non-Thermal Plasma in Synthesis of Ni/Al2O3eMgO Nanocatalyst Used in Hydrogen Production from Reforming of CH4/CO2 Greenhouse Gases.” Journal Power Sources 257: 364e373.Google Scholar

  • Fathi, S., M. Sohrabi, and C. Falamaki. 2014. “Improvement of HZSM-5 Performance by Alkaline Treatments: Comparative Catalytic Study in the MTG Reactions.” Fuel 116: 529–537.Web of ScienceCrossrefGoogle Scholar

  • Fellah, M. F., and I. Onal. 2011. “C–H Bond Activation of Methane on M- and MO-ZSM-5 (M = Ag, Au, Cu, Rh and Ru) Clusters: A Density Functional Theory Study.” Catalysis Today 171: 52–59.CrossrefWeb of ScienceGoogle Scholar

  • Ferreira, M., S. Al-Bogami, and H. de Lasa. 2015. “Self Diffusivity of n-Dodecane and Benzothiophene in ZSM-5 Zeolites. Its Significance for a New Catalytic Light Diesel Desulfurization Process.” International Journal of Chemical Reactor Engineering 14 (3): 737–748.Web of ScienceGoogle Scholar

  • Gregg, SJ, and KSW. Sing. 1967. Adsorption, Surface Area, and Porosity. London: Academic Press.Google Scholar

  • Gregg, S. J., and K. S. W. Sing. 1982. Adsorption, Surface Area and Porosity., 2nd ed. London: Academic Press.Google Scholar

  • Hagey, L., and H. de Lasa. 2004. “Conversion of Synthesis Gas into Light Hydrocarbons. Modelling of the Catalytic Reaction Network.” International Journal of Chemical Reactor Engineering 2 (1): Article A9. DOI: .CrossrefGoogle Scholar

  • Kianfar, E, M Salimi, V Pirouzfar, and B. Koohestani. 2017. “Synthesis of Modified Catalyst and Stabilization of CuO/NH4-ZSM-5 for Conversion of Methanol to Gasoline.” International Journal Applications Ceram Technological 1–8. doi:.CrossrefGoogle Scholar

  • Li, X., B. Shen, Q. Guo, and J. Gao. 2007. “Effects of Large Pore Zeolite Additions in the Catalytic Pyrolysis Catalyst on the Light Olefins Production.” Catalysis Today 125: 270.CrossrefWeb of ScienceGoogle Scholar

  • Liu, Bonan, Liam France, Chen Wu, Zheng Jiang, Vladimir L. Kuznetsov, Hamid A. Al-Megren, Mohammed Al-Kinany, Saud A. Aldrees, Tiancun Xiaoa, and Peter P. Edwards. 2015. “Methanol-to-Hydrocarbons Conversion over MoO3/H-ZSM-5 Catalysts Prepared via Lower Temperature Calcination: Route to Tailor the Distribution and Evolution of Promoter Mo Species, and their Corresponding Catalytic Properties.” Journal of Chemical Sciences 6: 5152.Google Scholar

  • Mena Subiranas, A., and G. Schaub. 2007. “Combining Fischer-Tropsch (FT) and Hydrocarbon Reactions under FT Reaction Conditions – Catalyst and Reactor Studies with Co or Fe and Pt/ZSM-5.” International Journal of Chemical Reactor Engineering 5 (1): Article A78. DOI: .CrossrefGoogle Scholar

  • Rahemi, N., M. Haghighi, A. A. Babaluo, and M. Fallah Jafari. 2014. “Syngas Production via CO2 Reforming of Methane over Plasma Assisted Synthesized Ni-Co/Al2O3eZrO2 Nanocatalysts with Different Ni-Loadings.” International Journal Energy Researcher 38: 765–779.CrossrefGoogle Scholar

  • Rownaghi, Ali A., and Jonas Hedlund. 2011. “Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5.” Industrial Engineering Chemical Researcher 50 (21): 11872–11878.CrossrefGoogle Scholar

  • Sengupta, S., D. Ghosal, J. Basu, et al. 2012 . “Chemical Modification of HZSM-5 for Selective Methylation.” International Journal of Chemical Reactor Engineering 10 (1): Article A22 . DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Shirazi, L., E. Jamshidi, et al. 2008. “The Effect of Si/Al Ratio of ZSM-5 Zeolite on Its Morphology, Acidity and Crystal Size.” Cryst Researcher Technological 43 (12): 1300–1306.Google Scholar

  • Sing, K. S. W. 1985. “Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984).” Pure and Applied Chemistry 57 (4): 603–619. DOI: .CrossrefGoogle Scholar

  • Svelle, S., F. Joensen, J. Nerlov, U. Olsbye, K. P. Lillerud, S. Kolboe, and M. Bjorgen. 2006. “Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:  Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes.” Journal of the American Chemical Society 128: 14770–14771.CrossrefGoogle Scholar

  • Tessonnier, J. P., B. Louis, S. Rigolet, M. J. Ledoux, and C. Pham-Huu. 2008. “Methane Dehydro-Aromatization on Mo/ZSM-5: About the Hidden Role of Brønsted Acid Sites.” Applications Catalysis A 336: 79–88.CrossrefGoogle Scholar

  • Vo, D.-V. N., C. G. Cooper, T.-H. Nguyen, A. A. Adesina, and D. B. Bukur. 2012. “Evaluation of alumina-supported Mo carbide produced via propane carburization for the Fischer–Tropsch synthesis.” Fuel 93: 105–116.Web of ScienceCrossrefGoogle Scholar

  • Yan, H. T., and R. Le Van Mao. 2010. “Hybrid Catalysts Used in the Catalytic Steam Cracking Process (CSC): Influence of the Pore Characteristics and the Surface Acidity Properties of the ZSM-5Zeolite-Based Component on the Overall Catalytic Performance.” Applied Catalysis A:General 375: 63.CrossrefGoogle Scholar

  • Zaidi, H. A., and K. K. Pant. 2004. “Catalytic Conversion of Methanol to Gasoline Range Hydrocarbons.” Catalysis Today 96: 155–160.CrossrefGoogle Scholar

  • Zhang, H., S. Shao, R. Xiao, D. Shen, and J. Zeng. 2014. “Characterization of Coke Deposition in the Catalytic Fast Pyrolysis of Biomass Derivates.” Energy Fuels 28: 52–57.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-11-26

Accepted: 2018-03-12

Revised: 2018-01-14

Published Online: 2018-04-05


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 7, 20170229, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0229.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in