Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2018: 1.059
5-year IMPACT FACTOR: 1.156

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.292
Source Normalized Impact per Paper (SNIP) 2018: 0.520

See all formats and pricing
More options …
Volume 16, Issue 7


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Catalytic Gasification – A Critical Analysis of Carbon Dioxide Methanation on a Ru/Al2O3 Catalyst

Eric M. Lange
  • Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brianne DeMattia
  • Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge E. Gatica
  • Corresponding author
  • Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-25 | DOI: https://doi.org/10.1515/ijcre-2018-0008


This paper proposes a corrected kinetic model for the Sabatier (CO2 Methanation) reaction. Several other kinetic studies have been performed on the Sabatier reaction to date; however, many of these studies contain simplifications. Data available from one of the first studies (Lunde, P.J., and F.L. Kester. 1974. “Carbon Dioxide Methanation on a Ruthenium Catalyst.” Industrial & Engineering Chemistry Process Design and Development 13 (1): 27–33) was utilized to perform a new analysis of the kinetics of CO2 Methanation. This work examined two models for the Sabatier reaction, the Perfect Mixing assumption and the differential (conversion) reactor assumption. After available data was screened for the occurrence of the Reverse Water Gas Shift reaction, the differential (conversion) reactor assumption was validated. A critical comparison to similar models available in literature is also presented.

Keywords: Sabatier; CO2 Methanation; Kinetics; Trash to Supply Gas Technology


  • Arena, U., F. Di Gregorio, C. Amorese, and M.L. Mastellone. 2011. “A Techno-Economic Comparison of Fluidized Bed Gasification of Two Mixed Plastic Wastes.” Waste Management 31 (7): 1494–1504.Web of ScienceCrossrefGoogle Scholar

  • Aznar, M.P., M.A. Caballero, J.A. Sancho, and E. Francés. 2006. “Plastic Waste Elimination by Co-Gasification with Coal and Biomass in Fluidized Bed with Air in Pilot Plant.” Fuel Processing Technology 87 (5): 409–420.CrossrefGoogle Scholar

  • Brachi, P., R. Chirone, F. Miccio, M. Miccio, A. Picarelli, and G. Ruoppolo. 2014. “Fluidized Bed Co-Gasification of Biomass and Polymeric Wastes for a Flexible End Use of the Syngas: Focus on Bio-Methanol.” Fuel 128: 88–98.CrossrefWeb of ScienceGoogle Scholar

  • Brooks, K.P., J. Hu, H. Zhu, and R.J. Kee. 2007. “Methanation of Carbon Dioxide by Hydrogen Reduction Using the Sabatier Process in Microchannel Reactors.” Chemical Engineering Science 62 (4): 1161–1170.CrossrefWeb of ScienceGoogle Scholar

  • De Filippis, P., C. Borgianni, M. Paolucci, and F. Pochetti. 2004. “Prediction of Syngas Quality for Two-Stage Gasification of Selected Waste Feedstocks.” Waste Management 24 (6): 633–639.CrossrefGoogle Scholar

  • Environmental Protection Agency. 2016. Advancing Sustainable Materials Management 2014 Fact Sheet: Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Land Filling in the United States. Washington, DC: United States Environmental Protection Agency Office of Land and Emergency Management.Google Scholar

  • Ewert, M.K., and J.L Broyan. 2013. Mission Benefits Analysis of Logistics Reduction Technologies. 43rd International Conference on Environmental Systems.Google Scholar

  • He, M., B. Xiao, Z. Hu, S. Liu, X. Guo, and S. Luo. 2009. “Syngas Production from Catalytic Gasification of Waste Polyethylene: Influence of Temperature on Gas Yield and Composition.” International Journal of Hydrogen Energy 34 (3): 1342–1348.CrossrefWeb of ScienceGoogle Scholar

  • Hintze, P.E., A.J. Caraccio, S.M. Anthony, A.N. Tsoras, M. Nur, R. Devor, and J.G. Captain, 2013. Trash-To-Gas: Using Waste Products to Minimize Logistical Mass during Long Duration Space Missions. AIAA Space 2013 Converence.Google Scholar

  • Hintze, P.E., E. Santiago-Maldonado, M.J. Kulis, J.K. Lytle, J.W. Fisher, H. Vaccaro, M.K. Ewert, and J.L. Broyan, 2012. Trash to Supply Gas (Ttsg) Project Overview. Space 2012 Conference.Google Scholar

  • Kannan, P., A. Al Shoaibi, and C. Srinivasakannan. 2013. “Energy Recovery from Co-Gasification of Waste Polyethylene and Polyethylene Terephthalate Blends.” Computer & Fluids 88: 38–42.CrossrefGoogle Scholar

  • Koschany, F., D. Schlereth, and O. Hinrichsen. 2016. “On the Kinetics of the Methanation of Carbon Dioxide on Coprecipitated NiAl(O)x.” Applied Catalysis B: Environmental 181: 504–516.Web of ScienceCrossrefGoogle Scholar

  • Kowalczyk, Z., K. Stolecki, W. Raróg-Pilecka, E. Miśkiewicz, E. Wilczkowska, and Z. Karpiński. 2008. “Supported Ruthenium Catalysts for Selective Methanation of Carbon Oxides at Very Low Cox/H2 Ratios.” Applied Catalysis A: General 342 (1): 35–39.CrossrefWeb of ScienceGoogle Scholar

  • Lunde, P.J., and F.L. Kester. 1974. “Carbon Dioxide Methanation on a Ruthenium Catalyst.” Industrial & Engineering Chemistry Process Design and Development 13 (1): 27–33.CrossrefGoogle Scholar

  • Ohya, H., J. Fun, H. Kawamura, K. Itoh, H. Ohashi, M. Aihara, S. Tanisho, and Y. Negishi. 1997. “Methanation of Carbon Dioxide by Using Membrane Reactor Integrated with Water Vapor Permselective Membrane and Its Analysis.” Journal of Membrane Science 131 (1): 237–247.CrossrefGoogle Scholar

  • Pinto, F., C. Franco, R.N. André, M. Miranda, I. Gulyurtlu, and I. Cabrita. 2002. “Co-Gasification Study of Biomass Mixed with Plastic Wastes.” Fuel 81 (3): 291–297.CrossrefGoogle Scholar

  • Santiago-Maldonado, E., J. Captain, R. Devor, and J. Gleaton. 2010. Creating Methane from Plastic: Recycling at a Lunar Outpost. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Google Scholar

  • Skinner, M.A. 2017 . “Orbital Debris: What are the Best Near-Term Actionss to Take? A View from the Field.” The Journal of Space Safety Engineering 4 (2): 105–111.CrossrefGoogle Scholar

  • Traa, Y., and J. Weitkamp. 1999. “Kinetics of the Methanation of Carbon Dioxide over Ruthenium on Titania.” Chemical Engineering and Technology 22 (4): 291–293.CrossrefGoogle Scholar

  • Van Herwijnen, T., H. Van Doesburg, and W.A. De Jong. 1973. “Kinetics of the Methanation of CO and CO2 on a Nickel Catalyst.” Journal of Catalysis 28 (3): 391–402.CrossrefGoogle Scholar

  • Weatherbee, G.D., and C.H. Batholomew. 1982. “Hydrogenation of CO2 on Group VIII Metals: II Kinetics and Mechanism of CO2 Hydrogenation on Nickel.” Journal of Catalyss 77 (2): 460–472.CrossrefGoogle Scholar

  • Wu, W., X. Zhou, P. Zhang, W. Liu, D. Danzeng, S. Wang, and Y. Wang. 2016. “Study on Characteristics of Synthesis Gas Generation during Catalytic Gasification of Municipal Solid Waste.” Procedia Environmental Sciences 31: 505–513.CrossrefGoogle Scholar

  • Yang Lim, J., J. McGregor, A.J. Sederman, and J.S. Dennis. 2016. “Kinetic Studies of CO2 Methanation over a Ni/γ-Al2O3 Catalyst Using a Batch Reactor.” Chemical Engineering Science 141: 28–45.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-01-14

Accepted: 2018-03-21

Published Online: 2018-05-25

Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 7, 20180008, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0008.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in