Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2018: 1.059
5-year IMPACT FACTOR: 1.156

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.292
Source Normalized Impact per Paper (SNIP) 2018: 0.520

See all formats and pricing
More options …
Volume 17, Issue 11


Volume 18 (2020)

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Catalytic Synthesis of Monoglycerides by Glycerolysis of Triglycerides

Mariana Soledad Alvarez Serafini
  • Corresponding author
  • Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
  • Department of Chemical Engineering, Planta Piloto de Ingeniería Química – PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriela Marta Tonetto
  • Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
  • Department of Chemical Engineering, Planta Piloto de Ingeniería Química – PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-09-05 | DOI: https://doi.org/10.1515/ijcre-2019-0056


The synthesis of monoglycerides by the transesterification of triglycerides with glycerol was studied using zinc glycerolate as a heterogeneous catalyst.

The effect of the operating variables on the triglyceride conversion and monoglyceride yield was evaluated. The maximum values of triglyceride conversion and monoglyceride yield reached at 2-hour reaction time were 83 and 49 %, respectively. These values were obtained at 240 °C with 3 % catalyst loading and glycerol/oil molar ratio of 6. When the molar ratio of the reactants was increased, the triglyceride conversion and monoglyceride yield achieved an optimum value. This behavior was related with a competitive adsorption of the reagents.

It was possible to reuse the catalyst without significant changes in activity.

Keywords: glycerolysis; zinc glycerolate; glycerol; monoglyceride


  • Balsamo, N. F., K. Sapag, M. I. Oliva, G. A. Pecchi, G. A. Eimer, and M. E. Crivello. 2017. “Mixed Oxides Tuned with Alkaline Metals to Improve Glycerolysis for Sustainable Biodiesel Production.” Catalysis Today 279: 209–16. https://doi.org/10.1016/j.cattod.2016.06.005.CrossrefWeb of Science

  • Besset, D. H. 2001. Object-oriented Implementation of Numerical Methods: an Introduction with Java and Smalltalk. Wellington: Morgan Kaufmann Publishers.Google Scholar

  • Binhayeeding, N., S. Klomklao, and K. Sangkharak. 2017. “Utilization of Waste Glycerol from Biodiesel Process as a Substrate for Mono-, Di-, and Triacylglycerol Production.” Energy Procedia 138: 895–900. https://doi.org/10.1016/j.egypro.2017.10.130.Crossref

  • Cheong, M. Y., H. A. Hassan, R. Ismail, and Z. A. Azizul Hasan. 2017. “Preparation and Characterization of Zinc Glycerolate: UV Protection, Biological Activity and Permeation Study.” Journal of Saudi Chemical Society 21: 643–55. https://doi.org/10.1016/j.jscs.2015.09.002.Web of ScienceCrossref

  • Co, C., M. Tan, J. Diamante, L. Yan, R. Tan, and L. Razon. 2011. “Internal Mass-transfer Limitations on the Transesterification of Coconut Oil Using an Anionic Ion Exchange Resin in a Packed Bed Reactor.” Catalysis Today 174: 54–58. https://doi.org/10.1016/j.cattod.2011.02.065.CrossrefWeb of Science

  • Corma, A., S. B. A. Hamid, S. Iborra, and A. Velty. 2005. “Lewis and Brönsted Basic Active Sites on Solid Catalysts and Their Role in the Synthesis of Monoglycerides.” Journal of Catalysis 234: 340–47. https://doi.org/10.1016/j.jcat.2005.06.023.Crossref

  • Corma, A., S. Iborra, S. Miquel, and J. Primo. 1998. “Catalysts for the Production of Fine Chemicals: Production of Food Emulsifiers, Monoglycerides, by Glycerolysis of Fats with Solid Base Catalysts.” Journal of Catalysis 173: 315–21. https://doi.org/10.1006/jcat.1997.1930.Crossref

  • Dong, H., and C. Feldmann. 2012. “Porous ZnO Platelets via Controlled Thermal Decomposition of Zinc Glycerolate.” Journal of Alloys and Compounds 513: 125–29. https://doi.org/10.1016/j.jallcom.2011.10.004.Web of ScienceCrossref

  • Echeverri, D. A., F. Cardeño, and L. A. Rios. 2011. “Glycerolysis of Soybean Oil with Crude Glycerol Containing Residual Alkaline Catalysts from Biodiesel Production.” Journal of the American Oil Chemists’ Society 88: 551–57. https://doi.org/10.1007/s11746-010-1688-5.Web of ScienceCrossref

  • Fairlie, D. P., M. W. Whitehouse, and R. M. Taylor. 1992. “Zinc Monoglycerolate – A Slow-release Source of Therapeutic Zinc: Solubilization by Endogenous Ligands.” Agents and Actions 36: 152–58. https://doi.org/10.1007/BF01991243.Crossref

  • Ferretti, C. A., R. N. Olcese, C. R. Apesteguía, and J. I. Di Cosimo. 2009. “Heterogeneously-Catalyzed Glycerolysis of Fatty Acid Methyl Esters: Reaction Parameter Optimization.” Industrial & Engineering Chemistry 48: 10387–94. https://doi.org/10.1021/ie9004783.CrossrefWeb of Science

  • Fiametti, K. G., S. Rovani, D. de Oliveira, M. L. Corazza, H. Treichel, and J. V. Oliveira. 2008. “Kinetics of Solvent-free Lipase-catalyzed Production of Monoacylglycerols from Olive Oil in aerosol-OT Surfactant.” Industrial & Engineering Chemistry 48: 708–12. https://doi.org/10.1021/ie8013956.Web of Science

  • Fogler, H., and L. Scott. 1999. Elements of Chemical Reaction Engineering. New Jersey: Pretince Hall.Google Scholar

  • Hu, S., X. Luo, C. Wan, and Y. Li. 2012. “Characterization of Crude Glycerol from Biodiesel Plants.” Journal of Agricultural and Food Chemistry 60: 5915–21. https://doi.org/10.1021/jf3008629.CrossrefWeb of Science

  • Kondawar, S., and C. Rode. 2017. “Solvent-free Glycerol Transesterification with Propylene Carbonate to Glycerol Carbonate over a Solid Base Catalyst.” Energy Fuels 31: 4361–71. https://doi.org/10.1021/acs.energyfuels.7b00034.CrossrefWeb of Science

  • Kong, P. S., P. Cognet, Y. Pérès, J. Esvan, W. M. A. W. Daud, and M. K. Aroua. 2018. “Development of a Novel Hydrophobic ZrO2–SiO2 Based Acid Catalyst for Catalytic Esterification of Glycerol with Oleic Acid.” Industrial & Engineering Chemistry 57: 9386–99. https://doi.org/10.1021/acs.iecr.8b01609.Crossref

  • Luo, H., Z. Zhai, W. Fan, W. Cui, G. Nan, and Z. Li. 2015. “Monoacylglycerol Synthesis by Glycerolysis of Soybean Oil Using Alkaline Ionic Liquid.” Industrial & Engineering Chemistry 54: 4923–28. https://doi.org/10.1021/ie5049548.Web of ScienceCrossref

  • Moulijn, J. A., A. E. Van Diepen, and F. Kapteijn. 2001. “Catalyst Deactivation: Is It Predictable?: What to Do?” Applied Catalysis A: General 212: 3–16. https://doi.org/10.1016/S0926-860X(00)00842-5.Crossref

  • Naik, M. K., S. N. Naik, and S. Mohanty. 2014. “Enzymatic Glycerolysis for Conversion of Sunflower Oil to Food Based Emulsifiers.” Catalysis Today 237: 145–49. https://doi.org/10.1016/j.cattod.2013.11.005.CrossrefWeb of Science

  • Norma UNE-EN-14105. 2003. AENOR Asociación española de normalización y certificación.Google Scholar

  • Olivares-Carrillo, P., J. Quesada-Medina, A. P. de Los Ríos, and F. J. Hernández-Fernández. 2014. “Estimation of Critical Properties of Reaction Mixtures Obtained in Different Reaction Conditions during the Synthesis of Biodiesel with Supercritical Methanol from Soybean Oil.” Chemical Engineering Journal 241: 418–32. https://doi.org/10.1016/j.cej.2013.10.067.CrossrefWeb of Science

  • Ong, H. R., M. M. R. Khan, R. Ramli, R. M. Yunus, and M. W. Rahman. 2016. “Glycerolysis of Palm Oil Using Copper Oxide Nanoparticles Combined with Homogeneous Base Catalyst.” New Journal of Chemistry 40: 8704–09. https://doi.org/10.1039/C6NJ01461E.Web of ScienceCrossref

  • Pawongrat, R., X. Xu, and A. H-Kittikun. 2007. “Synthesis of Monoacylglycerol Rich in Polyunsaturated Fatty Acids from Tuna Oil with Immobilized Lipase AK.” Food Chemistry 104: 251–58. https://doi.org/10.1016/j.foodchem.2006.11.036.CrossrefWeb of Science

  • Portha, J., F. Allain, V. Coupard, A. Dandeu, E. Girot, E. Schaer, and L. Falk. 2012. “Simulation and Kinetic Study of Transesterification of Triolein to Biodiesel Using Modular Reactors.” Chemical Engineering Journal 207–208: 285–98. https://doi.org/10.1016/j.cej.2012.06.106.Web of Science

  • Rarokar, N. R., S. Menghani, D. Kerzare, and P. B. Khedekar. 2017. “Progress in Synthesis of Monoglycerides for Use in Food and Pharmaceuticals.” Journal of Experimental Food Chemistry 3: 2472–542. https://doi.org/10.4172/2472-0542.1000128.

  • Reid, R. C., J. M. Prausnitz, and B. E. Poling. 1987. The Properties of Gases & Liquids. New York: McGraw-Hill Book Company.Google Scholar

  • Reinoso, D. M., D. E. Damiani, and G. M. Tonetto. 2014. “Zinc Glycerolate as a Novel Heterogeneous Catalyst for the Synthesis of Fatty Acid Methyl Esters.” Applied Catalysis B: Environmental 144: 308–16. https://doi.org/10.1016/j.apcatb.2013.07.026.CrossrefWeb of Science

  • Schroeder, K. 2005. Glycerine In: Industrial Oil and Fat Products. Hoboken, New Jersey: John Wiley & Sons, Inc., 191.Google Scholar

  • Sonntag, N. O. V. 1982. “Glycerolysis of Fats and Methyl Esters-Status, Review and Critique.” Journal of the American Oil Chemists’ Society 59: 795–802. https://doi.org/10.1007/BF02634442.Crossref

  • Taylor, R., and A. Brock. 1985. US Patent 4,544,761.Google Scholar

  • Tyn, M. T., and W. F. Calus. 1975. “Diffusion Coefficients in Dilute Binary Liquid Mixtures.” Journal of Chemical & Engineering Data 20: 106–09. https://doi.org/10.1021/je60064a006.Crossref

  • Wéstertterp, K., W. Van Swaaij, and A. Beenackers. 1987. Chemical Reactor Design and Operation. New York: Jhon Wiley and Sons.Google Scholar

  • Whitehouse, M. W., K. D. Rainsford, R. M. Taylor, and B. Vernon-Roberts. 1990. “Zinc Monoglycerolate: A Slow-release Source of Zinc with Anti-arthritic Activity in Rats.” Agents and Actions 3: 31–47. https://doi.org/10.1007/BF02003221.

  • Yaws, C. L. 1999. Chemical Properties Handbook: Physical, Thermodynamics, Environmental Transport, Safety and Health Related Properties for Organic and Inorganic Chemicals. New York: McGraw-Hill Education.Google Scholar

  • Zhong, N., L. Cheong, and X. Xu. 2014. “Strategies to Obtain High Content of Monoacylglycerols.” European Journal of Lipid Science and Technology 116: 97–107. https://doi.org/10.1002/ejlt.201300336.CrossrefWeb of Science

  • Zhong, N., L. Li, X. Xu, L. Cheong, B. Li, S. Hu, and X. Zhao. 2009. “An Efficient Binary Solvent Mixture for Monoacylglycerol Synthesis by Enzymatic Glycerolysis.” Journal of the American Oil Chemists’ Society 86: 783–89. https://doi.org/10.1007/s11746-009-1402-7.CrossrefWeb of Science

  • Zhong, N., L. Li, X. Xu, L. Cheong, Z. Xu, and B. Li. 2013. “High Yield of Monoacylglycerols Production through Low-temperature Chemical and Enzymatic Glycerolysis.” European Journal of Lipid Science and Technology 115: 684–90. https://doi.org/10.1002/ejlt.201200377.Web of ScienceCrossref

About the article

Received: 2019-03-21

Accepted: 2019-07-27

Revised: 2019-07-15

Published Online: 2019-09-05

Citation Information: International Journal of Chemical Reactor Engineering, Volume 17, Issue 11, 20190056, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2019-0056.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in