Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao


IMPACT FACTOR 2018: 1.059
5-year IMPACT FACTOR: 1.156

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.292
Source Normalized Impact per Paper (SNIP) 2018: 0.520

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 17, Issue 4

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Steam Reforming of Biomass Pyrolysis Oil: A Review

Adewale George AdeniyiORCID iD: https://orcid.org/0000-0001-6615-5361 / Kevin Shegun Otoikhian
  • Chemical Engineering Department, Faculty of Engineering and Technology, Edo University, Iyamho, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joshua O. Ighalo
  • Chemical Engineering Department, Faculty of Engineering and Technology, University of Ilorin, Ilorin, P. M. B. 1515, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-09 | DOI: https://doi.org/10.1515/ijcre-2018-0328

Abstract

The steam reforming of biomass pyrolysis oil is a well-established means of producing the more useful bio-hydrogen. Bio-oil has a comparatively low heating value, incomplete volatility and acidity, hence upgrading to a more useful product is required. Over the years, the experimental conditions of the process have been studied extensively in the domain of catalysis and process variable optimisation. Sorption enhancement is now being applied to the system to improve the purity of the hydrogen stream. Lifecycle analyses has revealed that bio-hydrogen offers considerable reductions in energy consumption compared to fossil fuel-derived hydrogen. Also, green-house-gas savings from the process can also be as high as 54.5 %. Unfortunately, techno-economic analyses have elucidated that bio-hydrogen production is still hampered by high production costs. Research endeavours in steam reforming of biomass bio-oil is done with an eye for developing added value products that can complement, substitute (and one day replace) fossil fuels whilst ameliorating the global warming menace.

Keywords: steam reforming; catalyst; biomass; pyrolysis; bio-oil; review

References

  • Abdelouahed, L., O. Authier, G. Mauviel, J.-P. Corriou, G. Verdier, and A. Dufour. 2012. “Detailed Modeling of Biomass Gasification in Dual Fluidized Bed Reactors under Aspen Plus.” Energy & Fuels 26 (6): 3840–55.CrossrefGoogle Scholar

  • Abdullah, N., F. Sulaiman, and R. M. Taib 2013. Feeding of Banana (Musa Spp.) Plantation Wastes for Fast Pyrolysis Process. Paper presented at the AIP Conference Proceedings.Google Scholar

  • Abdullah, N., F. Sulaiman, R. M. Taib, and M. A. Miskam 2015. Pyrolytic Oil of Banana (Musa Spp.) Pseudo-Stem via Fast Process. Paper presented at the AIP Conference Proceedings.Google Scholar

  • Abdullah, T., T. Amran, W. Nabgan, M. J. Kamaruddin, R. Mat, A. Johari, and A. Ahmad 2014. Hydrogen Production from Acetic Acid Steam Reforming over Bimetallic Ni-Co on La2O3 Catalyst-Effect of the Catalyst Dilution. Paper presented at the Applied Mechanics and Materials.Google Scholar

  • Aboyade, A. O., T. J. Hugo, M. Carrier, E. L. Meyer, R. Stahl, J. H. Knoetze, and J. F. Görgens. 2011. “Non-Isothermal Kinetic Analysis of the Devolatilization of Corn Cobs and Sugar Cane Bagasse in an Inert Atmosphere.” Thermochimica Acta 517 (1–2): 81–89.CrossrefGoogle Scholar

  • Adeniyi, A. G., L. T. Adewoye, and J. O. Ighalo. 2018. “Computer Aided Simulation of the Pyrolysis of Waste Lubricating Oil Using Aspen Hysys.” Journal of Environmental Research, Emgineering and Management 74 (2): 52–57. doi: .CrossrefGoogle Scholar

  • Adeniyi, A. G., A. A. O. Eletta, and J. O. Ighalo. 2018. “Computer Aided Modelling Of Low Density Polyethylene Pyrolysis To Produce Synthetic Fuels.” Nigerian Journal of Technology 37 (4): 945–49. doi: .CrossrefGoogle Scholar

  • Adeniyi, A. G., and J. O. Ighalo. 2018. “Study of Process Factor Effects and Interactions in Synthesis Gas Production via a Simulated Model for Glycerol Steam Reforming.” Chemical Product and Process Modeling. doi: .CrossrefGoogle Scholar

  • Adeniyi, A. G., J. O. Ighalo, and K. M. Amosa. 2019. “Modelling and Simulation of Banana (Musa Spp.) Waste Pyrolysis for Bio-Oil Production.” Biofuels. doi: .CrossrefGoogle Scholar

  • Adhikari, S., S. Fernando, S. R. Gwaltney, S. F. To, R. M. Bricka, P. H. Steele, and A. Haryanto. 2007. “A Thermodynamic Analysis of Hydrogen Production by Steam Reforming of Glycerol.” International Journal of Hydrogen Energy 32 (14): 2875–80.CrossrefGoogle Scholar

  • Adhikari, S., S. Fernando, and A. Haryanto. 2007. “A Comparative Thermodynamic and Experimental Analysis on Hydrogen Production by Steam Reforming of Glycerin.” Energy & Fuels 21 (4): 2306–10.CrossrefGoogle Scholar

  • Aguiar, L., F. Márquez-Montesinos, A. Gonzalo, J. Sánchez, and J. Arauzo. 2008. “Influence of Temperature and Particle Size on the Fixed Bed Pyrolysis of Orange Peel Residues.” Journal of Analytical and Applied Pyrolysis 83 (1): 124–30.CrossrefGoogle Scholar

  • Alves, S., and J. Figueiredo. 1989. “A Model for Pyrolysis of Wet Wood.” Chemical Engineering Science 44 (12): 2861–69.CrossrefGoogle Scholar

  • An, L., C. Dong, Y. Yang, J. Zhang, and L. He. 2011. “The Influence of Ni Loading on Coke Formation in Steam Reforming of Acetic Acid.” Renewable Energy 36 (3): 930–35.CrossrefGoogle Scholar

  • Arandia, A., A. Remiro, V. García, P. Castaño, J. Bilbao, and A. Gayubo. 2018. “Oxidative Steam Reforming of Raw Bio-Oil over Supported and Bulk Ni Catalysts for Hydrogen Production.” Catalysts 8 (8): 322.CrossrefGoogle Scholar

  • Arregi, A., M. Amutio, G. Lopez, J. Bilbao, and M. Olazar. 2018. “Evaluation of Thermochemical Routes for Hydrogen Production from Biomass: A Review.” Energy Conversion and Management 165: 696–719.CrossrefGoogle Scholar

  • Arregi, A., G. Lopez, M. Amutio, I. Barbarias, J. Bilbao, and M. Olazar. 2016. “Hydrogen Production from Biomass by Continuous Fast Pyrolysis and In-Line Steam Reforming.” RSC Advances 6 (31): 25975–85.CrossrefGoogle Scholar

  • Ashraf, J., and A. Kumar. 2018. “Thermodynamic Evaluation of Hydrazine Assisted Glycerol Reforming for Syngas Production and Coke Inhibition.” International Journal of Hydrogen Energy 43.Google Scholar

  • Asmadi, M., H. Kawamoto, and S. Saka. 2011. “Gas-And Solid/Liquid-Phase Reactions during Pyrolysis of Softwood and Hardwood Lignins.” Journal of Analytical and Applied Pyrolysis 92 (2): 417–25.CrossrefGoogle Scholar

  • Assaf, P. G., F. G. E. Nogueira, and E. M. Assaf. 2013. “Ni and Co Catalysts Supported on Alumina Applied to Steam Reforming of Acetic Acid: Representative Compound for the Aqueous Phase of Bio-Oil Derived from Biomass.” Catalysis Today 213: 2–8.CrossrefGoogle Scholar

  • Barattini, L., G. Ramis, C. Resini, G. Busca, M. Sisani, and U. Costantino. 2009. “Reaction Path of Ethanol and Acetic Acid Steam Reforming over Ni–Zn–Al Catalysts.” Flow Reactor Studies. Chemical Engineering Journal 153 (1–3): 43–49.Google Scholar

  • Basagiannis, A., and X. Verykios. 2006. “Reforming Reactions of Acetic Acid on Nickel Catalysts over a Wide Temperature Range.” Applied Catalysis A: General 308: 182–93.CrossrefGoogle Scholar

  • Basagiannis, A., and X. Verykios. 2007a. “Catalytic Steam Reforming of Acetic Acid for Hydrogen Production.” International Journal of Hydrogen Energy 32 (15): 3343–55.CrossrefGoogle Scholar

  • Basagiannis, A. C., and X. E. Verykios. 2007b. “Steam Reforming of the Aqueous Fraction of Bio-Oil over Structured Ru/MgO/Al2O3 Catalysts.” Catalysis Today 127 (1–4): 256–64.CrossrefGoogle Scholar

  • Basagiannis, A. C., and X. E. Verykios. 2008. “Influence of the Carrier on Steam Reforming of Acetic Acid over Ru-Based Catalysts.” Applied Catalysis B: Environmental 82 (1–2): 77–88.CrossrefGoogle Scholar

  • Basile, A., F. Gallucci, A. Iulianelli, F. Borgognoni, and S. Tosti. 2008. “Acetic Acid Steam Reforming in a Pd–Ag Membrane Reactor: The Effect of the Catalytic Bed Pattern.” Journal of Membrane Science 311 (1–2): 46–52.CrossrefGoogle Scholar

  • Bimbela, F., D. Chen, J. Ruiz, L. García, and J. Arauzo. 2012. “Ni/Al Coprecipitated Catalysts Modified with Magnesium and Copper for the Catalytic Steam Reforming of Model Compounds from Biomass Pyrolysis Liquids.” Applied Catalysis B: Environmental 119: 1–12.Google Scholar

  • Bimbela, F., M. Oliva, J. Ruiz, L. García, and J. Arauzo. 2007. “Hydrogen Production by Catalytic Steam Reforming of Acetic Acid, a Model Compound of Biomass Pyrolysis Liquids.” Journal of Analytical and Applied Pyrolysis 79 (1–2): 112–20.CrossrefGoogle Scholar

  • Bimbela, F., M. Oliva, J. Ruiz, L. García, and J. Arauzo. 2013. “Hydrogen Production via Catalytic Steam Reforming of the Aqueous Fraction of Bio-Oil Using Nickel-Based Coprecipitated Catalysts.” International Journal of Hydrogen Energy 38 (34): 14476–87.CrossrefGoogle Scholar

  • Bizkarra, K., J. Bermudez, P. Arcelus-Arrillaga, V. Barrio, J. Cambra, and M. Millan. 2018. “Nickel Based Monometallic and Bimetallic Catalysts for Synthetic and Real Bio-Oil Steam Reforming.” International Journal of Hydrogen Energy 43.Google Scholar

  • Bleeker, M., S. Gorter, S. Kersten, L. van der Ham, H. van Den Berg, and H. Veringa. 2010. “Hydrogen Production from Pyrolysis Oil Using the Steam-Iron Process: A Process Design Study.” Clean Technologies and Environmental Policy 12 (2): 125–35.CrossrefGoogle Scholar

  • Bossola, F., C. Evangelisti, M. Allieta, R. Psaro, S. Recchia, and V. Dal Santo. 2016. “Well-Formed, Size-Controlled Ruthenium Nanoparticles Active and Stable for Acetic Acid Steam Reforming.” Applied Catalysis B: Environmental 181: 599–611.CrossrefGoogle Scholar

  • Bulushev, D. A., and J. R. Ross. 2011. “Catalysis for Conversion of Biomass to Fuels via Pyrolysis and Gasification: A Review.” Catalysis Today 171 (1): 1–13.CrossrefGoogle Scholar

  • Calles, J. A., A. Carrero, A. J. Vizcaíno, L. García-Moreno, and P. J. Megía. 2019. “Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts.” International Journal of Molecular Sciences 20 (3): 512.CrossrefGoogle Scholar

  • Carrier, M., A. G. Hardie, Ü. Uras, J. Görgens, and J. H. Knoetze. 2012. “Production of Char from Vacuum Pyrolysis of South-African Sugar Cane Bagasse and Its Characterization as Activated Carbon and Biochar.” Journal of Analytical and Applied Pyrolysis 96: 24–32.CrossrefGoogle Scholar

  • Carrier, M., T. Hugo, J. Gorgens, and H. Knoetze. 2011. “Comparison of Slow and Vacuum Pyrolysis of Sugar Cane Bagasse.” Journal of Analytical and Applied Pyrolysis 90 (1): 18–26.CrossrefGoogle Scholar

  • Chattanathan, S. A., S. Adhikari, and N. Abdoulmoumine. 2012. “A Review on Current Status of Hydrogen Production from Bio-Oil.” Renewable and Sustainable Energy Reviews 16 (5): 2366–72.CrossrefGoogle Scholar

  • Chen, G., J. Tao, C. Liu, B. Yan, W. Li, and X. Li. 2017. “Hydrogen Production via Acetic Acid Steam Reforming: A Critical Review on Catalysts.” Renewable and Sustainable Energy Reviews 79: 1091–98.CrossrefGoogle Scholar

  • Chen, H., T. Zhang, B. Dou, V. Dupont, P. Williams, M. Ghadiri, and Y. Ding. 2009a. “Thermodynamic Analyses of Adsorption-Enhanced Steam Reforming of Glycerol for Hydrogen Production.” International Journal of Hydrogen Energy 34 (17): 7208–22.CrossrefGoogle Scholar

  • Chen, M., Y. Wang, T. Liang, and Z. Yang 2018. Hydrogen Production by Steam Reforming of Bio-Oil Aqueous Fraction over Co-Fe/ZSM-5. Paper presented at the IOP Conference Series: Earth and Environmental Science.Google Scholar

  • Chen, T., C. Wu, and R. Liu. 2011. “Steam Reforming of Bio-Oil from Rice Husks Fast Pyrolysis for Hydrogen Production.” Bioresource Technology 102 (19): 9236–40.CrossrefGoogle Scholar

  • Chen, Y., et al. 2009b. “Effects of Current upon Hydrogen Production from Electrochemical Catalytic Reforming of Acetic Acid.” International Journal of Hydrogen Energy 34 (4): 1760–70.CrossrefGoogle Scholar

  • Cheng, F., and V. Dupont. 2013. “Nickel Catalyst Auto-Reduction during Steam Reforming of Bio-Oil Model Compound Acetic Acid.” International Journal of Hydrogen Energy 38 (35): 15160–72.CrossrefGoogle Scholar

  • Cheng, Q., M. Jiang, Z. Chen, X. Wang, and B. Xiao. 2016. “Pyrolysis and Kinetic Behavior of Banana Stem Using Thermogravimetric Analysis.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (22): 3383–90.CrossrefGoogle Scholar

  • Collard, F.-X., and J. Blin. 2014. “A Review on Pyrolysis of Biomass Constituents: Mechanisms and Composition of the Products Obtained from the Conversion of Cellulose, Hemicelluloses and Lignin.” Renewable and Sustainable Energy Reviews 38: 594–608.CrossrefGoogle Scholar

  • Czernik, S., R. Evans, and R. French. 2007. “Hydrogen from Biomass-Production by Steam Reforming of Biomass Pyrolysis Oil.” Catalysis Today 129 (3–4): 265–68.CrossrefGoogle Scholar

  • Czernik, S., and R. French. 2014. “Distributed Production of Hydrogen by Auto-Thermal Reforming of Fast Pyrolysis Bio-Oil.” International Journal of Hydrogen Energy 39: 744–50.CrossrefGoogle Scholar

  • Czernik, S., R. French, C. Feik, and E. Chornet. 2002. “Hydrogen by Catalytic Steam Reforming of Liquid Byproducts from Biomass Thermoconversion Processes.” Industrial & Engineering Chemistry Research 41 (17): 4209–15.CrossrefGoogle Scholar

  • Da Silva, A. L., and I. L. Müller. 2011. “Hydrogen Production by Sorption Enhanced Steam Reforming of Oxygenated Hydrocarbons (Ethanol, Glycerol, N-Butanol and Methanol): Thermodynamic Modelling.” International Journal of Hydrogen Energy 36 (3): 2057–75.CrossrefGoogle Scholar

  • Darmstadt, H., M. Garcia-Perez, A. Chaala, N.-Z. Cao, and C. Roy. 2001. “Co-Pyrolysis under Vacuum of Sugar Cane Bagasse and Petroleum Residue: Properties of the Char and Activated Char Products.” Carbon 39 (6): 815–25.CrossrefGoogle Scholar

  • Davidian, T., N. Guilhaume, E. Iojoiu, H. Provendier, and C. Mirodatos. 2007. “Hydrogen Production from Crude Pyrolysis Oil by a Sequential Catalytic Process.” Applied Catalysis B: Environmental 73 (1–2): 116–27.CrossrefGoogle Scholar

  • De Vlieger, D., L. Lefferts, and K. Seshan. 2014. “Ru Decorated Carbon Nanotubes–A Promising Catalyst for Reforming Bio-Based Acetic Acid in the Aqueous Phase.” Green Chemistry 16 (2): 864–74.CrossrefGoogle Scholar

  • Demirbas, M. F., and M. Balat. 2007. “Biomass Pyrolysis for Liquid Fuels and Chemicals: A Review.” Journal of Scientific and Industrial Research 66: 797–804.Google Scholar

  • Dou, B., et al. 2009. “Hydrogen Production by Sorption-Enhanced Steam Reforming of Glycerol.” Bioresource Technology 100 (14): 3540–47.CrossrefGoogle Scholar

  • Dou, B., Y. Song, C. Wang, H. Chen, and Y. Xu. 2014. “Hydrogen Production from Catalytic Steam Reforming of Biodiesel Byproduct Glycerol: Issues and Challenges.” Renewable and Sustainable Energy Reviews 30: 950–60.CrossrefGoogle Scholar

  • Drummond, A.-R. F., and I. W. Drummond. 1996. “Pyrolysis of Sugar Cane Bagasse in a Wire-Mesh Reactor.” Industrial & Engineering Chemistry Research 35 (4): 1263–68.CrossrefGoogle Scholar

  • Encinar, J. M., F. J. Beltrán, J. F. González, and M. J. Moreno. 1997. “Pyrolysis of Maize, Sunflower, Grape and Tobacco Residues.” Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology 70 (4): 400–10.CrossrefGoogle Scholar

  • Esteban-Díez, G., M. V. Gil, C. Pevida, D. Chen, and F. Rubiera. 2016. “Effect of Operating Conditions on the Sorption Enhanced Steam Reforming of Blends of Acetic Acid and Acetone as Bio-Oil Model Compounds.” Applied Energy 177: 579–90.CrossrefGoogle Scholar

  • Farrow, S., E. Eterigho, and C. Snape. 2018. “Pyrolysis and Char Burnout Characteristics of Cassava Peelings as Potential Energy Source.” Chemical and Process Engineering Research 57: 59–66.Google Scholar

  • Fermoso, J., M. V. Gil, F. Rubiera, and D. Chen. 2014. “Multifunctional Pd/Ni–Co Catalyst for Hydrogen Production by Chemical Looping Coupled with Steam Reforming of Acetic Acid.” ChemSusChem 7 (11): 3063–77.CrossrefGoogle Scholar

  • French, R., and S. Czernik. 2010. “Catalytic Pyrolysis of Biomass for Biofuels Production.” Fuel Processing Technology 91 (1): 25–32.CrossrefGoogle Scholar

  • Fu, P., S. Hu, J. Xiang, L. Sun, P. Li, J. Zhang, and C. Zheng. 2009. “Pyrolysis of Maize Stalk on the Characterization of Chars Formed under Different Devolatilization Conditions.” Energy & Fuels 23 (9): 4605–11.CrossrefGoogle Scholar

  • Galdámez, J. R., L. García, and R. Bilbao. 2005. “Hydrogen Production by Steam Reforming of Bio-Oil Using Coprecipitated Ni− Al Catalysts. Acetic Acid as a Model Compound.” Energy & Fuels 19 (3): 1133–42.CrossrefGoogle Scholar

  • Ganesh, A., and P. D. Grover 1992. Combustion and gasification characteristics of rice husk.Google Scholar

  • Garcia, L., R. French, S. Czernik, and E. Chornet. 2000. “Catalytic Steam Reforming of Bio-Oils for the Production of Hydrogen: Effects of Catalyst Composition.” Applied Catalysis A: General 201 (2): 225–39.CrossrefGoogle Scholar

  • Garcia-Perez, M., A. Chaala, H. Pakdel, D. Kretschmer, and C. Roy. 2007. “Vacuum Pyrolysis of Softwood and Hardwood Biomass: Comparison between Product Yields and Bio-Oil Properties.” Journal of Analytical and Applied Pyrolysis 78 (1): 104–16.CrossrefGoogle Scholar

  • Garcı̀a-Pèrez, M., A. Chaala, and C. Roy. 2002. “Vacuum Pyrolysis of Sugarcane Bagasse.” Journal of Analytical and Applied Pyrolysis 65 (2): 111–36.CrossrefGoogle Scholar

  • Gavin, W., D. Stuart, and R. Emilio 2016. Modeling the Impact of Biomass Particle Residence Time on Fast Pyrolysis Yield and Composition. Paper presented at the AIChE Annual Meeting, San Francisco.Google Scholar

  • Gayubo, A. G., B. Valle, B. Aramburu, C. Montero, and J. Bilbao. 2018. “Kinetic Model considering Catalyst Deactivation for the Steam Reforming of Bio-Oil over Ni/La2O3-αAl2O3.” Chemical Engineering Journal 332: 192–204.CrossrefGoogle Scholar

  • Gil, M. V., J. Fermoso, C. Pevida, D. Chen, and F. Rubiera. 2016. “Production of Fuel-Cell Grade H2 by Sorption Enhanced Steam Reforming of Acetic Acid as a Model Compound of Biomass-Derived Bio-Oil.” Applied Catalysis B: Environmental 184: 64–76.CrossrefGoogle Scholar

  • Goicoechea, S., H. Ehrich, P. L. Arias, and N. Kockmann. 2015. “Thermodynamic Analysis of Acetic Acid Steam Reforming for Hydrogen Production.” Journal of Power Sources 279: 312–22.CrossrefGoogle Scholar

  • Goicoechea, S., E. Kraleva, S. Sokolov, M. Schneider, M.-M. Pohl, N. Kockmann, and H. Ehrich. 2016. “Support Effect on Structure and Performance of Co and Ni Catalysts for Steam Reforming of Acetic Acid.” Applied Catalysis A: General 514: 182–91.CrossrefGoogle Scholar

  • Gollakota, A. R. K., M. Reddy, M. D. Subramanyam, and N. Kishore. 2016. “A Review on the Upgradation Techniques of Pyrolysis Oil.” Renewable and Sustainable Energy Reviews 58: 1543–68.CrossrefGoogle Scholar

  • Goyal, N., K. Pant, and R. Gupta. 2013. “Hydrogen Production by Steam Reforming of Model Bio-Oil Using Structured Ni/Al2O3 Catalysts.” International Journal of Hydrogen Energy 38 (2): 921–33.CrossrefGoogle Scholar

  • Güell, B. M., I. Babich, K. Seshan, and L. Lefferts. 2008. “Steam Reforming of Biomass Based oxygenates—Mechanism of Acetic Acid Activation on Supported Platinum Catalysts.” Journal of Catalysis 257 (1): 229–31.CrossrefGoogle Scholar

  • He, F., W. Yi, R. Sun, J. Zha, X. Bai, and Y. Li. 2002. “Pyrolysis and Its Kinetics of Corn Stalk and Wheat Straw.” Transactions of the Chinese Society of Agricultural Engineering 18 (4): 10–13.Google Scholar

  • Heracleous, E. 2011. “Well-to-Wheels Analysis of Hydrogen Production from Bio-Oil Reforming for Use in Internal Combustion Engines.” International Journal of Hydrogen Energy 36 (18): 11501–11.CrossrefGoogle Scholar

  • Hoang, T. M. C., B. Geerdink, J. M. Sturm, L. Lefferts, and K. Seshan. 2015. “Steam Reforming of Acetic acid–A Major Component in the Volatiles Formed during Gasification of Humin.” Applied Catalysis B: Environmental 163: 74–82.CrossrefGoogle Scholar

  • Hou, T., et al. 2009. “Hydrogen Production by Low-Temperature Reforming of Organic Compounds in Bio-Oil over a CNT-promoting Ni Catalyst.” International Journal of Hydrogen Energy 34 (22): 9095–107.CrossrefGoogle Scholar

  • Hu, R., C. Yan, X. Zheng, H. Liu, and Z. Zhou. 2013. “Carbon Deposition on Ni/ZrO2–CeO2 Catalyst during Steam Reforming of Acetic Acid.” International Journal of Hydrogen Energy 38 (14): 6033–38.CrossrefGoogle Scholar

  • Hu, X., and G. Lu. 2006. “Steam Reforming of Acetic Acid to Hydrogen over Fe–Co Catalyst.” Chemistry Letters 35 (4): 452–53.CrossrefGoogle Scholar

  • Hu, X., and G. Lu. 2007. “Investigation of Steam Reforming of Acetic Acid to Hydrogen over Ni–Co Metal Catalyst.” Journal of Molecular Catalysis A: Chemical 261: 43–48.CrossrefGoogle Scholar

  • Hu, X., and G. Lu. 2008. “The Inhibition Effect of Potassium Addition on Methane Formation in Steam Reforming of Acetic Acid over Alumina-Supported Cobalt Catalysts.” Chemistry Letters 37 (6): 614–15.CrossrefGoogle Scholar

  • Hu, X., and G. Lu. 2009a. “Inhibition of Methane Formation in Steam Reforming Reactions through Modification of Ni Catalyst and the Reactants.” Green Chemistry 11 (5): 724–32.CrossrefGoogle Scholar

  • Hu, X., and G. Lu. 2009b. “Investigation of the Steam Reforming of a Series of Model Compounds Derived from Bio-Oil for Hydrogen Production.” Applied Catalysis B: Environmental 88 (3–4): 376–85.CrossrefGoogle Scholar

  • Hu, X., and G. Lu. 2010a. “Acetic Acid Steam Reforming to Hydrogen over Co–Ce/Al2O3 and Co–La/Al2O3 Catalysts—The Promotion Effect of Ce and La Addition.” Catalysis Communications 12 (1): 50–53.CrossrefGoogle Scholar

  • Hu, X., and G. Lu. 2010b. “Comparative Study of Alumina-Supported Transition Metal Catalysts for Hydrogen Generation by Steam Reforming of Acetic Acid.” Applied Catalysis B: Environmental 99 (1–2): 289–97.CrossrefGoogle Scholar

  • Hu, X., L. Zhang, and G. Lu. 2012. “Pruning of the Surface Species on Ni/Al2O3 Catalyst to Selective Production of Hydrogen via Acetone and Acetic Acid Steam Reforming.” Applied Catalysis A: General 427: 49–57.Google Scholar

  • Ioannidou, O., A. Zabaniotou, E. Antonakou, K. Papazisi, A. Lappas, and C. Athanassiou. 2009. “Investigating the Potential for Energy, Fuel, Materials and Chemicals Production from Corn Residues (Cobs and Stalks) by Non-Catalytic and Catalytic Pyrolysis in Two Reactor Configurations.” Renewable and Sustainable Energy Reviews 13 (4): 750–62.CrossrefGoogle Scholar

  • Iojoiu, E.E., M. E. Domine, T. Davidian, N. Guilhaume, and C. Mirodatos. 2007. “Hydrogen Production by Sequential Cracking of Biomass-Derived Pyrolysis Oil over Noble Metal Catalysts Supported on Ceria-Zirconia.” Applied Catalysis A: General 323: 147–61.CrossrefGoogle Scholar

  • Iordanidis, A., P. Kechagiopoulos, S. Voutetakis, A. Lemonidou, and I. Vasalos. 2006. “Autothermal Sorption-Enhanced Steam Reforming of Bio-Oil/Biogas Mixture and Energy Generation by Fuel Cells: Concept Analysis and Process Simulation.” International Journal of Hydrogen Energy 31 (8): 1058–65.CrossrefGoogle Scholar

  • Isahak, W. N. R. W., M. W. Hisham, M. A. Yarmo, and T. Y. Hin. 2012. “A Review on Bio-Oil Production from Biomass by Using Pyrolysis Method.” Renewable and Sustainable Energy Reviews 16 (8): 5910–23.CrossrefGoogle Scholar

  • Ismadjia, S., Y.-H. Jub, C. X. Linc, A. Kurniawana, and O. L. Kia 2012. Bio-Oil from Cassava Peel: Potential Renewable Energy Source. Paper presented at the The 5th International Conference on Industrial Bioprocesses Taipei.Google Scholar

  • Iulianelli, A., T. Longo, and A. Basile. 2008. “CO-free Hydrogen Production by Steam Reforming of Acetic Acid Carried Out in a Pd–Ag Membrane Reactor: The Effect of Co-Current and Counter-Current Mode.” International Journal of Hydrogen Energy 33 (15): 4091–96.CrossrefGoogle Scholar

  • Iwasa, N., T. Yamane, and M. Arai. 2011. “Influence of Alkali Metal Modification and Reaction Conditions on the Catalytic Activity and Stability of Ni Containing Smectite-Type Material for Steam Reforming of Acetic Acid.” International Journal of Hydrogen Energy 36 (10): 5904–11.CrossrefGoogle Scholar

  • Iwasa, N., T. Yamane, M. Takei, J. Ozaki, and M. Arai. 2010. “Hydrogen Production by Steam Reforming of Acetic Acid: Comparison of Conventional Supported Metal Catalysts and Metal-Incorporated Mesoporous Smectite-Like Catalysts.” International Journal of Hydrogen Energy 35 (1): 110–17.CrossrefGoogle Scholar

  • Jiang, H., and R. V. Morey. 1992. “Pyrolysis of Corncobs at Fluidization.” Biomass and Bioenergy 3 (2): 81–85.CrossrefGoogle Scholar

  • Ji-Lu, Z. 2007. “Bio-Oil from Fast Pyrolysis of Rice Husk: Yields and Related Properties and Improvement of the Pyrolysis System.” Journal of Analytical and Applied Pyrolysis 80 (1): 30–35.CrossrefGoogle Scholar

  • Kechagiopoulos, P. N., S. S. Voutetakis, A. A. Lemonidou, and I. A. Vasalos. 2006. “Hydrogen Production via Steam Reforming of the Aqueous Phase of Bio-Oil in a Fixed Bed Reactor.” Energy & Fuels 20 (5): 2155–63.CrossrefGoogle Scholar

  • Kechagiopoulos, P. N., S. S. Voutetakis, A. A. Lemonidou, and I. A. Vasalos. 2009. “Hydrogen Production via Reforming of the Aqueous Phase of Bio-Oil over Ni/Olivine Catalysts in a Spouted Bed Reactor.” Industrial & Engineering Chemistry Research 48 (3): 1400–08.CrossrefGoogle Scholar

  • Ki, O. L., A. Kurniawan, C. X. Lin, Y.-H. Ju, and S. Ismadji. 2013. “Bio-Oil from Cassava Peel: A Potential Renewable Energy Source.” Bioresource Technology 145: 157–61.CrossrefGoogle Scholar

  • Kinoshita, C., and S. Turn. 2003. “Production of Hydrogen from Bio-Oil Using CaO as a CO2 Sorbent.” International Journal of Hydrogen Energy 28 (10): 1065–71.Google Scholar

  • Lea-Langton, A., R. M. Zin, V. Dupont, and M. V. Twigg. 2012. “Biomass Pyrolysis Oils for Hydrogen Production Using Chemical Looping Reforming.” International Journal of Hydrogen Energy 37 (2): 2037–43.CrossrefGoogle Scholar

  • Lemonidou, A. A., E. C. Vagia, and J. A. Lercher. 2013. “Acetic Acid Reforming over Rh Supported on La2O3/CeO2–ZrO2: Catalytic Performance and Reaction Pathway Analysis.” ACS Catalysis 3 (9): 1919–28.CrossrefGoogle Scholar

  • Li, Z., X. Hu, L. Zhang, S. Liu, and G. Lu. 2012a. “Steam Reforming of Acetic Acid over Ni/ZrO2 Catalysts: Effects of Nickel Loading and Particle Size on Product Distribution and Coke Formation.” Applied Catalysis A: General 417: 281–89.Google Scholar

  • Li, Z., X. Hu, L. Zhang, and G. Lu. 2012b. “Renewable Hydrogen Production by a Mild-Temperature Steam Reforming of the Model Compound Acetic Acid Derived from Bio-Oil.” Journal of Molecular Catalysis A: Chemical 355: 123–33.CrossrefGoogle Scholar

  • Liu, S., M. Chen, L. Chu, Z. Yang, C. Zhu, J. Wang, and M. Chen. 2013. “Catalytic Steam Reforming of Bio-Oil Aqueous Fraction for Hydrogen Production over Ni–Mo Supported on Modified Sepiolite Catalysts.” International Journal of Hydrogen Energy 38 (10): 3948–55.CrossrefGoogle Scholar

  • Magrini-Bair, K., S. Czernik, R. French, Y. Parent, M. Ritland, and E. Chornet 2002. Fluidizable Catalysts for Producing Hydrogen by Steam Reforming Biomass Pyrolysis Liquids. Paper presented at the Proceedings of the 2002 US DOE Hydrogen Program Review NREL/CP-610.Google Scholar

  • Mancera, A., et al. 2010. “Physicochemical Characterisation of Sugar Cane Bagasse Lignin Oxidized by Hydrogen Peroxide.” Polymer Degradation and Stability 95 (4): 470–76.CrossrefGoogle Scholar

  • Manocha, S., J. H. Bhagat, and L. M. Manocha. 2001. “Studies on Pyrolysis Behaviour of Banana Stem as Precursor for Porous Carbons.” Carbon Letters 2 (2): 91–98.Google Scholar

  • Marquevich, M., S. Czernik, E. Chornet, and D. Montané. 1999. “Hydrogen from Biomass: Steam Reforming of Model Compounds of Fast-Pyrolysis Oil.” Energy & Fuels 13 (6): 1160–66.CrossrefGoogle Scholar

  • Medrano, J., M. Oliva, J. Ruiz, L. Garcia, and J. Arauzo. 2008. “Catalytic Steam Reforming of Acetic Acid in a Fluidized Bed Reactor with Oxygen Addition.” International Journal of Hydrogen Energy 33 (16): 4387–96.CrossrefGoogle Scholar

  • Meier, D., and O. Faix. 1999. “State of the Art of Applied Fast Pyrolysis of Lignocellulosic Materials—A Review.” Bioresource Technology 68 (1): 71–77.CrossrefGoogle Scholar

  • Mohanty, P., M. Patel, and K. K. Pant. 2012. “Hydrogen Production from Steam Reforming of Acetic Acid over Cu–Zn Supported Calcium Aluminate.” Bioresource Technology 123: 558–65.CrossrefGoogle Scholar

  • Montero, C., L. Oar-Arteta, A. Remiro, A. Arandia, J. Bilbao, and A. G. Gayubo. 2015. “Thermodynamic Comparison between Bio-Oil and Ethanol Steam Reforming.” International Journal of Hydrogen Energy 40 (46): 15963–71.CrossrefGoogle Scholar

  • Moreno-Piraján, J., and L. Giraldo. 2010. “Study of Activated Carbons by Pyrolysis of Cassava Peel in the Presence of Chloride Zinc.” Journal of Analytical and Applied Pyrolysis 87 (2): 288–90.CrossrefGoogle Scholar

  • Müller-Hagedorn, M., H. Bockhorn, L. Krebs, and U. Müller. 2003. “A Comparative Kinetic Study on the Pyrolysis of Three Different Wood Species.” Journal of Analytical and Applied Pyrolysis 68: 231–49.Google Scholar

  • Nabgan, W., T. A. T. Abdullah, R. Mat, B. Nabgan, Y. Gambo, and K. Moghadamian. 2016a. “Acetic Acid-Phenol Steam Reforming for Hydrogen Production: Effect of Different Composition of La2O3-Al2O3 Support for Bimetallic Ni-Co Catalyst.” Journal of Environmental Chemical Engineering 4 (3): 2765–73.CrossrefGoogle Scholar

  • Nabgan, W., T. A. T. Abdullah, R. Mat, B. Nabgan, A. A. Jalil, L. Firmansyah, and S. Triwahyono. 2016b. “Production of Hydrogen via Steam Reforming of Acetic Acid over Ni and Co Supported on La2O3 Catalyst.” International Journal of Hydrogen Energy 42 (14): 8975–85.Google Scholar

  • Naidoo, S. 2018. Feasibility study for maize as a feedstock for liquid fuels production based on a simulation developed in Aspen Plus®.Google Scholar

  • Navarro-Mtz, A., M. Urzua-Valenzuela, and M. Morelos-Pedro. 2017. “Hydrogen Production from Non-Conventional Biomass Pyrolysis.” Inorganic Chemistry: An Indian Journal 12 (1): 107.Google Scholar

  • Neumann, J., S. Binder, A. Apfelbacher, J. R. Gasson, P. R. García, and A. Hornung. 2015. “Production and Characterization of a New Quality Pyrolysis Oil, Char and Syngas from Digestate–Introducing the Thermo-Catalytic Reforming Process.” Journal of Analytical and Applied Pyrolysis 113: 137–42.CrossrefGoogle Scholar

  • Nogueira, F. G. E., P. G. Assaf, H. W. Carvalho, and E. M. Assaf. 2014. “Catalytic Steam Reforming of Acetic Acid as a Model Compound of Bio-Oil.” Applied Catalysis B: Environmental 160: 188–99.Google Scholar

  • Nozawa, T., Y. Mizukoshi, A. Yoshida, and S. Naito. 2014. “Aqueous Phase Reforming of Ethanol and Acetic Acid over TiO2 Supported Ru Catalysts.” Applied Catalysis B: Environmental 146: 221–26.CrossrefGoogle Scholar

  • Ochoa, A., B. Valle, D. E. Resasco, J. Bilbao, A. G. Gayubo, and P. Castaño. 2018. “Temperature Programmed Oxidation Coupled with in Situ Techniques Reveal the Nature and Location of Coke Deposited on a Ni/La2O3‐αAl2O3 Catalyst in the Steam Reforming of Bio‐Oil.” ChemCatChem 10 (10): 2311–21.CrossrefGoogle Scholar

  • Ogunjobi, J. K., and L. Lajide. 2015. “The Potential of Cocoa Pods and Plantain Peels as Renewable Sources in Nigeria.” International Journal of Green Energy 12 (4): 440–45.CrossrefGoogle Scholar

  • Onarheim, K., Y. Solantausta, and J. Lehto. 2014. “Process Simulation Development of Fast Pyrolysis of Wood Using Aspen Plus.” Energy & Fuels 29 (1): 205–17.Google Scholar

  • Pant, K. K., P. Mohanty, S. Agarwal, and A. K. Dalai. 2013. “Steam Reforming of Acetic Acid for Hydrogen Production over Bifunctional Ni–Co Catalysts.” Catalysis Today 207: 36–43.CrossrefGoogle Scholar

  • Peters, B., and C. Bruch. 2003. “Drying and Pyrolysis of Wood Particles: Experiments and Simulation.” Journal of Analytical and Applied Pyrolysis 70 (2): 233–50.CrossrefGoogle Scholar

  • Peters, J. F., D. Iribarren, and J. Dufour 2013. Predictive Pyrolysis Process Modelling in Aspen Plus. Paper presented at the 21st Eur biomass conf exhib.Google Scholar

  • Peters, J. F., D. Iribarren, and J. Dufour. 2015. “Simulation and Life Cycle Assessment of Biofuel Production via Fast Pyrolysis and Hydroupgrading.” Fuel 139: 441–56.CrossrefGoogle Scholar

  • Pettersen, R. C. 1984. “The Chemical Composition of Wood.” The Chemistry of Solid Wood 207: 57–126.CrossrefGoogle Scholar

  • Qu, T., W. Guo, L. Shen, J. Xiao, and K. Zhao. 2011. “Experimental Study of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose, and Lignin.” Industrial & Engineering Chemistry Research 50: 10424–33.CrossrefGoogle Scholar

  • Quame, B. A. 1983. Apparatus for recovering energy and useful products from plantain wastes: Google Patents.Google Scholar

  • Ramzan, N., A. Ashraf, S. Naveed, and A. Malik. 2011. “Simulation of Hybrid Biomass Gasification Using Aspen Plus: A Comparative Performance Analysis for Food, Municipal Solid and Poultry Waste.” Biomass and Bioenergy 35 (9): 3962–69.CrossrefGoogle Scholar

  • Remiro, A., A. Arandia, L. Oar-Arteta, J. Bilbao, and A. G. Gayubo. 2018. “Stability of a Rh/CeO2–ZrO2 Catalyst in the Oxidative Steam Reforming of Raw Bio-Oil.” Energy & Fuels 32 (3): 3588–98.CrossrefGoogle Scholar

  • Remiro, A., B. Valle, A. Aguayo, J. Bilbao, and A. G. Gayubo. 2013a. “Operating Conditions for Attenuating Ni/La2O3–ΑAl2O3 Catalyst Deactivation in the Steam Reforming of Bio-Oil Aqueous Fraction.” Fuel Processing Technology 115: 222–32.CrossrefGoogle Scholar

  • Remiro, A., B. Valle, A. Aguayo, J. Bilbao, and A. G. Gayubo. 2013b. “Steam Reforming of Raw Bio-Oil in a Fluidized Bed Reactor with Prior Separation of Pyrolytic Lignin.” Energy & Fuels 27 (12): 7549–59.CrossrefGoogle Scholar

  • Remón, J., et al. 2014. “Production of a Hydrogen-Rich Gas from Fast Pyrolysis Bio-Oils: Comparison between Homogeneous and Catalytic Steam Reforming Routes.” International Journal of Hydrogen Energy 39 (1): 171–82.CrossrefGoogle Scholar

  • Remón, J., F. Broust, G. Volle, L. García, and J. Arauzo. 2015. “Hydrogen Production from Pine and Poplar Bio-Oils by Catalytic Steam Reforming. Influence of the Bio-Oil Composition on the Process.” International Journal of Hydrogen Energy 40 (16): 5593–608.CrossrefGoogle Scholar

  • Rennard, D., R. French, S. Czernik, T. Josephson, and L. Schmidt. 2010. “Production of Synthesis Gas by Partial Oxidation and Steam Reforming of Biomass Pyrolysis Oils.” International Journal of Hydrogen Energy 35 (9): 4048–59.CrossrefGoogle Scholar

  • Resende, K., C. Ávila-Neto, R. Rabelo-Neto, F. Noronha, and C. Hori. 2015. “Hydrogen Production by Reforming of Acetic Acid Using La–Ni Type Perovskites Partially Substituted with Sm and Pr.” Catalysis Today 242: 71–79.CrossrefGoogle Scholar

  • Rioche, C., S. Kulkarni, F. C. Meunier, J. P. Breen, and R. Burch. 2005. “Steam Reforming of Model Compounds and Fast Pyrolysis Bio-Oil on Supported Noble Metal Catalysts.” Applied Catalysis B: Environmental 61 (1–2): 130–39.CrossrefGoogle Scholar

  • Samson, M. A., A. S. Shaharin, and Y. Suzana. 2011. “A Simulation Study of Downdraft Gasification of Oil-Palm Fronds Using ASPEN PLUS.” Journal of Applied Sciences 11 (11): 1913–20.CrossrefGoogle Scholar

  • Santamaria, L., G. Lopez, A. Arregi, M. Amutio, M. Artetxe, J. Bilbao, and M. Olazar. 2018. “Influence of the Support on Ni Catalysts Performance in the In-Line Steam Reforming of Biomass Fast Pyrolysis Derived Volatiles.” Applied Catalysis B: Environmental 229: 105–13.CrossrefGoogle Scholar

  • Sarkar, S., and A. Kumar. 2010. “Large-Scale Biohydrogen Production from Bio-Oil.” Bioresource Technology 101 (19): 7350–61.CrossrefGoogle Scholar

  • Sharma, A., and T. R. Rao. 1999. “Kinetics of Pyrolysis of Rice Husk.” Bioresource Technology 67 (1): 53–59.CrossrefGoogle Scholar

  • Shen, L., Y. Gao, and J. Xiao. 2008. “Simulation of Hydrogen Production from Biomass Gasification in Interconnected Fluidized Beds.” Biomass and Bioenergy 32 (2): 120–27.CrossrefGoogle Scholar

  • Sørum, L., M. Grønli, and J. Hustad. 2001. “Pyrolysis Characteristics and Kinetics of Municipal Solid Wastes.” Fuel 80 (9): 1217–27.CrossrefGoogle Scholar

  • Spragg, J., T. Mahmud, and V. Dupont. 2018. “Hydrogen Production from Bio-Oil: A Thermodynamic Analysis of Sorption-Enhanced Chemical Looping Steam Reforming.” International Journal of Hydrogen Energy 43 (49): 22032–45.CrossrefGoogle Scholar

  • Srivastava, V., and R. Jalan 1996a. Development of mathematical model for prediction of concentration in the pyrolysis of biomass material.Google Scholar

  • Srivastava, V., and R. Jalan. 1996b. “Prediction of Concentration in the Pyrolysis of Biomass material—II.” Energy Conversion and Management 37 (4): 473–83.CrossrefGoogle Scholar

  • Takanabe, K., K. Aika, K. Inazu, T. Baba, K. Seshan, and L. Lefferts. 2006a. “Steam Reforming of Acetic Acid as a Biomass Derived Oxygenate: Bifunctional Pathway for Hydrogen Formation over Pt/ZrO2 Catalysts.” Journal of Catalysis 243: 263–69.CrossrefGoogle Scholar

  • Takanabe, K., K. Aika, K. Seshan, and L. Lefferts. 2004. “Sustainable Hydrogen from bio-oil—Steam Reforming of Acetic Acid as a Model Oxygenate.” Journal of Catalysis 227 (1): 101–08.CrossrefGoogle Scholar

  • Takanabe, K., K. Aika, K. Seshan, and L. Lefferts. 2006b. “Catalyst Deactivation during Steam Reforming of Acetic Acid over Pt/ZrO2.” Chemical Engineering Journal 120: 133–37.CrossrefGoogle Scholar

  • Tan, W., and Q. Zhong 2010. Simulation of Hydrogen Production in Biomass Gasifier by ASPEN PLUS. Paper presented at the Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific.Google Scholar

  • Thaicharoensutcharittham, S., V. Meeyoo, B. Kitiyanan, P. Rangsunvigit, and T. Rirksomboon. 2011. “Hydrogen Production by Steam Reforming of Acetic Acid over Ni-Based Catalysts.” Catalysis Today 164 (1): 257–61.CrossrefGoogle Scholar

  • Trane, R., S. Dahl, M. Skjøth-Rasmussen, and A. Jensen. 2012. “Catalytic Steam Reforming of Bio-Oil.” International Journal of Hydrogen Energy 37 (8): 6447–72.CrossrefGoogle Scholar

  • Trninić, M. R. (2015). Modeling And Optimisation Of Corn Cob Pyrolysis. (PhD), University Of Belgrade.Google Scholar

  • Tsai, W., M. Lee, and Y. Chang. 2006. “Fast Pyrolysis of Rice Straw, Sugarcane Bagasse and Coconut Shell in an Induction-Heating Reactor.” Journal of Analytical and Applied Pyrolysis 76 (1–2): 230–37.CrossrefGoogle Scholar

  • Tsai, W., M. Lee, and Y. Chang. 2007. “Fast Pyrolysis of Rice Husk: Product Yields and Compositions.” Bioresource Technology 98 (1): 22–28.CrossrefGoogle Scholar

  • Tzanetis, K., C. Martavaltzi, and A. Lemonidou. 2012. “Comparative Exergy Analysis of Sorption Enhanced and Conventional Methane Steam Reforming.” International Journal of Hydrogen Energy 37 (21): 16308–20.CrossrefGoogle Scholar

  • Uzun, B. B., and N. Sarioğlu. 2009. “Rapid and Catalytic Pyrolysis of Corn Stalks.” Fuel Processing Technology 90: 705–16. doi: .CrossrefGoogle Scholar

  • Vagia, E. C., and A. A. Lemonidou. 2007. “Thermodynamic Analysis of Hydrogen Production via Steam Reforming of Selected Components of Aqueous Bio-Oil Fraction.” International Journal of Hydrogen Energy 32 (2): 212–23.CrossrefGoogle Scholar

  • Vagia, E. C., and A. A. Lemonidou. 2008. “Thermodynamic Analysis of Hydrogen Production via Autothermal Steam Reforming of Selected Components of Aqueous Bio-Oil Fraction.” International Journal of Hydrogen Energy 33 (10): 2489–500.CrossrefGoogle Scholar

  • Vagia, E. C., and A. A. Lemonidou. 2010. “Investigations on the Properties of Ceria–Zirconia-Supported Ni and Rh Catalysts and Their Performance in Acetic Acid Steam Reforming.” Journal of Catalysis 269 (2): 388–96.CrossrefGoogle Scholar

  • Valle, B., B. Aramburu, P. L. Benito, J. Bilbao, and A. G. Gayubo. 2018a. “Biomass to Hydrogen-Rich Gas via Steam Reforming of Raw Bio-Oil over Ni/La 2 O 3-αAl 2 O 3 Catalyst: Effect of Space-Time and Steam-To-Carbon Ratio.” Fuel 216: 445–55.CrossrefGoogle Scholar

  • Valle, B., B. Aramburu, M. Olazar, J. Bilbao, and A. G. Gayubo. 2018b. “Steam Reforming of Raw Bio-Oil over Ni/La 2 O 3-αAl 2 O 3: Influence of Temperature on Product Yields and Catalyst Deactivation.” Fuel 216: 463–74.CrossrefGoogle Scholar

  • Valle, B., A. G. Gayubo, A. Atutxa, A. Alonso, and J. Bilbao. 2007. “Integration of Thermal Treatment and Catalytic Transformation for Upgrading Biomass Pyrolysis Oil.” International Journal of Chemical Reactor Engineering 5 (1): A86, 1–9.Google Scholar

  • Valle, B., A. Remiro, A. T. Aguayo, J. Bilbao, and A. G. Gayubo. 2013. “Catalysts of Ni/α-Al2O3 and Ni/La2O3-αAl2O3 for Hydrogen Production by Steam Reforming of Bio-Oil Aqueous Fraction with Pyrolytic Lignin Retention.” International Journal of Hydrogen Energy 38 (3): 1307–18.CrossrefGoogle Scholar

  • Van Rossum, G., S. R. Kersten, and W. P. van Swaaij. 2007. “Catalytic and Noncatalytic Gasification of Pyrolysis Oil.” Industrial & Engineering Chemistry Research 46 (12): 3959–67.CrossrefGoogle Scholar

  • Van Rossum, G., S. R. Kersten, and W. P. van Swaaij. 2009. “Staged Catalytic Gasification/Steam Reforming of Pyrolysis Oil.” Industrial & Engineering Chemistry Research 48 (12): 5857–66.CrossrefGoogle Scholar

  • Vispute, T. P., H. Zhang, A. Sanna, R. Xiao, and G. W. Huber. 2010. “Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils.” Science 330 (6008): 1222–27.CrossrefGoogle Scholar

  • Wang, D., S. Czernik, and E. Chornet. 1998. “Production of Hydrogen from Biomass by Catalytic Steam Reforming of Fast Pyrolysis Oils.” Energy & Fuels 12 (1): 19–24.CrossrefGoogle Scholar

  • Wang, D., S. Czernik, D. Montane, M. Mann, and E. Chornet. 1997. “Biomass to Hydrogen via Fast Pyrolysis and Catalytic Steam Reforming of the Pyrolysis Oil or Its Fractions.” Industrial & Engineering Chemistry Research 36 (5): 1507–18.CrossrefGoogle Scholar

  • Wang, D., D. Montane, and E. Chornet. 1996. “Catalytic Steam Reforming of Biomass-Derived Oxygenates: Acetic Acid and Hydroxyacetaldehyde.” Applied Catalysis A: General 143 (2): 245–70.CrossrefGoogle Scholar

  • Wang, Q., S. Wang, X. Li, and L. Guo. 2013. “Hydrogen Production via Acetic Acid Steam Reforming over HZSM-5 and Pd/HZSM-5 Catalysts and Subsequent Mechanism Studies.” BioResources 8 (2): 2897–909.Google Scholar

  • Wang, S., Q. Cai, F. Zhang, X. Li, L. Zhang, and Z. Luo. 2014. “Hydrogen Production via Catalytic Reforming of the Bio-Oil Model Compounds: Acetic Acid, Phenol and Hydroxyacetone.” International Journal of Hydrogen Energy 39 (32): 18675–87.CrossrefGoogle Scholar

  • Wang, S., X. Li, L. Guo, and Z. Luo. 2012. “Experimental Research on Acetic Acid Steam Reforming over Co–Fe Catalysts and Subsequent Density Functional Theory Studies.” International Journal of Hydrogen Energy 37 (15): 11122–31.CrossrefGoogle Scholar

  • Wang, S., F. Zhang, Q. Cai, L. Zhu, and Z. Luo. 2015a. “Steam Reforming of Acetic Acid over Coal Ash Supported Fe and Ni Catalysts.” International Journal of Hydrogen Energy 40 (35): 11406–13.CrossrefGoogle Scholar

  • Wang, X., S. Li, H. Wang, B. Liu, and X. Ma. 2008. “Thermodynamic Analysis of Glycerin Steam Reforming.” Energy & Fuels 22 (6): 4285–91.CrossrefGoogle Scholar

  • Wang, X., N. Wang, M. Li, S. Li, S. Wang, and X. Ma. 2010. “Hydrogen Production by Glycerol Steam Reforming with in Situ Hydrogen Separation: A Thermodynamic Investigation.” International Journal of Hydrogen Energy 35 (19): 10252–56.CrossrefGoogle Scholar

  • Wang, X., W. Zhou, G. Liang, D. Song, and X. Zhang. 2015b. “Characteristics of Maize Biochar with Different Pyrolysis Temperatures and Its Effects on Organic Carbon, Nitrogen and Enzymatic Activities after Addition to Fluvo-Aquic Soil.” Science of the Total Environment 538: 137–44.CrossrefGoogle Scholar

  • Ward, J., M. G. Rasul, and M. M. K. Bhuiya. 2014. “Energy Recovery from Biomass by Fast Pyrolysis.” Procedia Engineering 90 90: 669–74.CrossrefGoogle Scholar

  • Wildschut, J., F. H. Mahfud, R. H. Venderbosch, and H. J. Heeres. 2009. “Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts.” Industrial & Engineering Chemistry Research 48 (23): 10324–34.CrossrefGoogle Scholar

  • Wright, M. M., D. E. Daugaard, J. A. Satrio, and R. C. Brown. 2010. “Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels.” Fuel 89: S2–S10.Google Scholar

  • Wu, C., Q. Huang, M. Sui, Y. Yan, and F. Wang. 2008. “Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in a Two-Stage Fixed Bed Reactor System.” Fuel Processing Technology 89 (12): 1306–16.CrossrefGoogle Scholar

  • Wu, C., and R. Liu. 2010. “Carbon Deposition Behavior in Steam Reforming of Bio-Oil Model Compound for Hydrogen Production.” International Journal of Hydrogen Energy 35 (14): 7386–98.CrossrefGoogle Scholar

  • Xie, H., Q. Yu, K. Wang, X. Shi, and X. Li. 2014. “Thermodynamic Analysis of Hydrogen Production from Model Compounds of Bio‐Oil through Steam Reforming.” Environmental Progress & Sustainable Energy 33 (3): 1008–16.CrossrefGoogle Scholar

  • Xie, H., Q. Yu, M. Wei, W. Duan, X. Yao, Q. Qin, and Z. Zuo. 2015. “Hydrogen Production from Steam Reforming of Simulated Bio-Oil over Ce–Ni/CO Catalyst with in Continuous CO 2 Capture.” International Journal of Hydrogen Energy 40 (3): 1420–28.CrossrefGoogle Scholar

  • Xie, H., Q. Yu, Z. Zuo, Z. Han, X. Yao, and Q. Qin. 2016. “Hydrogen Production via Sorption-Enhanced Catalytic Steam Reforming of Bio-Oil.” International Journal of Hydrogen Energy 41 (4): 2345–53.CrossrefGoogle Scholar

  • Xie, J., D. Su, X. Yin, C. Wu, and J. Zhu. 2011. “Thermodynamic Analysis of Aqueous Phase Reforming of Three Model Compounds in Bio-Oil for Hydrogen Production.” International Journal of Hydrogen Energy 36 (24): 15561–72.CrossrefGoogle Scholar

  • Xu, Q., P. Lan, B. Zhang, Z. Ren, and Y. Yan. 2010. “Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in a Fluidized-Bed Reactor.” Energy & Fuels 24 (12): 6456–62.CrossrefGoogle Scholar

  • Yaman, S. 2004. “Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks.” Energy Conversion and Management 45 (5): 651–71.CrossrefGoogle Scholar

  • Yan, C.-F., F.-F. Cheng, and R.-R. Hu. 2010. “Hydrogen Production from Catalytic Steam Reforming of Bio-Oil Aqueous Fraction over Ni/CeO2–ZrO2 Catalysts.” International Journal of Hydrogen Energy 35 (21): 11693–99.CrossrefGoogle Scholar

  • Yan, H., and D. Zhang. 1999. “Modeling of a Low Temperature Pyrolysis Process Using ASPEN PLUS.” Asia‐Pacific Journal of Chemical Engineering 7 (5‐6): 577–91.Google Scholar

  • Yang, G., H. Yu, F. Peng, H. Wang, J. Yang, and D. Xie. 2011. “Thermodynamic Analysis of Hydrogen Generation via Oxidative Steam Reforming of Glycerol.” Renewable Energy 36 (8): 2120–27.CrossrefGoogle Scholar

  • Yang, X., Y. Wang, M. Li, B. Sun, Y. Li, and Y. Wang. 2016. “Enhanced Hydrogen Production by Steam Reforming of Acetic Acid over a Ni Catalyst Supported on Mesoporous MgO.” Energy & Fuels 30 (3): 2198–203.CrossrefGoogle Scholar

  • Zabaniotou, A., and O. Ioannidou. 2008. “Evaluation of Utilization of Corn Stalks for Energy and Carbon Material Production by Using Rapid Pyrolysis at High Temperature.” Fuel 87 (6): 834–43.CrossrefGoogle Scholar

  • Zarnegar, S. 2018. “A Review on Catalytic-Pyrolysis of Coal and Biomass for Value-Added Fuel and Chemicals.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (12): 1427–33.CrossrefGoogle Scholar

  • Zhang, F., M. Wang, L. Zhu, S. Wang, J. Zhou, and Z. Luo. 2016. “A Comparative Research on the Catalytic Activity of La2O3 and g-Al2O3 Supported Catalysts for Acetic Acid Steam Reforming.” International Journal of Hydrogen Energy 42 (6): 1–9.Google Scholar

  • Zhang, F., N. Wang, L. Yang, M. Li, and L. Huang. 2014. “Ni–Co Bimetallic MgO-based Catalysts for Hydrogen Production via Steam Reforming of Acetic Acid from Bio-Oil.” International Journal of Hydrogen Energy 39 (32): 18688–94.CrossrefGoogle Scholar

  • Zhang, J., H. Toghiani, D. Mohan, C. U. Pittman, and R. K. Toghiani. 2007a. “Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks.” Energy & Fuels 21 (4): 2373–85.CrossrefGoogle Scholar

  • Zhang, L., R. Liu, R. Yin, and Y. Mei. 2013a. “Upgrading of Bio-Oil from Biomass Fast Pyrolysis in China: A Review.” Renewable and Sustainable Energy Reviews 24: 66–72.CrossrefGoogle Scholar

  • Zhang, Q., J. Chang, T. Wang, and Y. Xu. 2007b. “Review of Biomass Pyrolysis Oil Properties and Upgrading Research.” Energy Conversion and Management 48 (1): 87–92.CrossrefGoogle Scholar

  • Zhang, Y., T. R. Brown, G. Hu, and R. C. Brown. 2013b. “Comparative Techno-Economic Analysis of Biohydrogen Production via Bio-Oil Gasification and Bio-Oil Reforming.” Biomass and Bioenergy 51: 99–108.CrossrefGoogle Scholar

  • Zhao, B., X. Zhang, L. Sun, G. Meng, L. Chen, and Y. Xiaolu. 2010. “Hydrogen Production from Biomass Combining Pyrolysis and the Secondary Decomposition.” International Journal of Hydrogen Energy 35 (7): 2606–11.CrossrefGoogle Scholar

  • Zheng, J.-L. 2008. “Pyrolysis Oil from Fast Pyrolysis of Maize Stalk.” Journal of Analytical and Applied Pyrolysis 83 (2): 205–12.CrossrefGoogle Scholar

  • Zheng, X., et al. 2012. “Hydrogen from Acetic Acid as the Model Compound of Biomass Fast-Pyralysis Oil over Ni Catalyst Supported on Ceria–Zirconia.” International Journal of Hydrogen Energy 37 (17): 12987–93.CrossrefGoogle Scholar

About the article

Received: 2018-12-20

Accepted: 2019-03-26

Revised: 2019-02-09

Published Online: 2019-04-09


Citation Information: International Journal of Chemical Reactor Engineering, Volume 17, Issue 4, 20180328, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0328.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in