Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 12, 2018

A Diffusion Cell for the Mass Transfer Investigation in the Solid Porous Media

  • Alexey Zhokh , Andrey Trypolskyi and Peter Strizhak EMAIL logo

Abstract

A diffusion cell for the mass transfer investigation of the gases through the solid porous media is developed. The diffusion cell may be configured in two different ways. One configuration corresponds to the reflecting boundary condition, whereas another configuration satisfies the absorbing boundary. The mass balance equations for different cell configurations are provided. The mass balance equations are applicable for the calculations of the diffusate quantity decays. The latter are suitable for the mass transfer parameters estimation using the solutions of the transport equations, obtained for the boundary conditions that correspond to the diffusion cell configurations. Accounting for the impact of the apparatus function of the diffusion cell on the experimental data is also revisited. In addition, the practical use of the diffusion cell based on the installation of the cell into the gas chromatograph for the investigation of the methane transport through the porous silica pellet as an example is demonstrated.

Acknowledgements

This study was partially supported by the National Academy of Sciences of Ukraine.

References

Acharya, S., U. K. Nandi, and S. Maitra Bhattacharyya. 2017. “Fickian yet non-Gaussian Behaviour: A Dominant Role of the Intermittent Dynamics.” Journal of Chemical Physics 146: 134504. doi:10.1063/1.4979338.Search in Google Scholar

Bhatia, S. K., and D. Nicholson. 2012. “Adsorption and Diffusion of Methane in Silica Nanopores: A Comparison of Single-Site and Five-Site Models.” Journal of Physical Chemistry C 116: 2344–55. doi:10.1021/jp210593d.Search in Google Scholar

Byrne, D., and J. C. Earnshaw. 1977. “Photon Correlation Spectroscopy of Liquid Surfaces: The Effect of Instrumental Broadening.” Journal of Physics D: Applied Physics 10: L207.10.1088/0022-3727/10/15/004Search in Google Scholar

Čapek, P., M. Veselý, and V. Hejtmánek. 2014. “On the Measurement of Transport Parameters of Porous Solids in Permeation and Wicke–Kallenbach Cells.” Chemical Engineering Science 118: 192–207. doi:10.1016/j.ces.2014.07.039.Search in Google Scholar

Castellote, M., C. Andrade, and C. Alonso. 2001. “Measurement of the Steady and Non-Steady-State Chloride Diffusion Coefficients in a Migration Test by Means of Monitoring the Conductivity in the Anolyte Chamber. Comparison with Natural Diffusion Tests.” Cement and Concrete Research 31: 1411–20. doi:10.1016/S0008-8846(01)00562-2.Search in Google Scholar

Cekmer, O., J. M. Lamanna, and M. M. Mench. 2013. “Alternative Analytical Analysis for Improved Loschmidt Diffusion Cell.” International Journal of Heat and Mass Transfer 65: 883–92. doi:10.1016/j.ijheatmasstransfer.2013.06.062.Search in Google Scholar

Chubynsky, M. V., and G. W. Slater. 2014. “Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion.” Physical Review Letters 113: 098302. doi:10.1103/PhysRevLett.113.098302.Search in Google Scholar PubMed

Crank, J. 1975. The Mathematics of Diffusion, 2nd ed. Oxford: Clarendon Press.Search in Google Scholar

Deutschmann, O., H. Knözinger, K. Kochloefl, and T. Turek. 2009. Heterogeneous Catalysis and Solid Catalysts, Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. doi:10.1002/14356007.Search in Google Scholar

Do, D. D. 1998. Adsorption Analysis: Equilibria and Kinetics:(With CD Containing Computer Matlab Programs). Europe: World Scientific.10.1142/p111Search in Google Scholar

Dogu, G., and T. Dogu. 1982. “A Note on Diffusion Limitations for Multiple Reaction Systems in Porous Catalysis.” AIChE Journal 28: 1036–38. doi:10.1002/aic.690280623.Search in Google Scholar

Doǧu, G., A. Keskin, and T. Doǧu. 1987. “Macropore and Micropore Effective Diffusion Coefficients from Dynamic Single‐Pellet Experiments.” AIChE Journal 33: 322–24. doi:10.1002/aic.690330222.Search in Google Scholar

Eic, M., and D. M. Ruthven. 1988. “A New Experimental Technique for Measurement of Intracrystalline Diffusivity.” Zeolites 8: 40–45. doi:10.1016/S0144-2449(88)80028-9.Search in Google Scholar

Gangwal, S. K., R. R. Hudgins, and P. L. Silveston. 1980. “Reliability and Limitations of Pulse Chromatography in Evaluating Properties of Flow Systems II. End Effects.” The Canadian Journal of Chemical Engineering 58: 33–37. doi:10.1002/cjce.5450580105.Search in Google Scholar

Gavril, D., and G. Karaiskakis. 1997. “New Gas Chromatographic Instrumentation for Studying Mass Transfer Phenomena.” Instrumentation Science & Technology 25: 217–34. doi:10.1080/10739149709351463.Search in Google Scholar

Gavril, D., and K. A. Rashid. 2007. “Inverse Gas Chromatographic Study of the Factors Affecting Surface Diffusivity of Gases over Heterogeneous Solids.” Instrumentation Science & Technology 36: 56–70. doi:10.1080/10739140701749989.Search in Google Scholar

Hassan, A. E., and M. M. Mohamed. 2003. “On Using Particle Tracking Methods to Simulate Transport in Single-Continuum and Dual Continua Porous Media.” Journal of Hydrology 275: 242–60. doi:10.1016/S0022-1694(03)00046-5.Search in Google Scholar

Joseph, C., J. Mibus, P. Trepte, C. Müller, V. Brendler, D. M. Park, Y. Jiao, A. B. Kersting, and M. Zavarin. 2017. “Long-Term Diffusion of U(VI) in Bentonite: Dependence on Density.” The Science of the Total Environment 575: 207–18. doi:10.1016/j.scitotenv.2016.10.005.Search in Google Scholar PubMed

Kärger, J., D. M. Ruthven, and D. N. Theodorou. 2012. Single-File Diffusion, In: Diffusion in Nanoporous Materials, 111–42. Germany: Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/9783527651276.ch5.Search in Google Scholar

Khare, R., D. Millar, and A. Bhan. 2015. “A Mechanistic Basis for the Effects of Crystallite Size on Light Olefin Selectivity in Methanol-To-Hydrocarbons Conversion on MFI.” Journal of Catalysis 321: 23–31. doi:10.1016/j.jcat.2014.10.016.Search in Google Scholar

Korneichuk, G. P., A. V Fesenko, and L. I. Kravetskii. 1976. “A Metal Reactor for the Diaphragm Method with Chambers Providing Complete Mixing.” Reaction Kinetics and Catalysis Letters 5: 395–99. doi:10.1007/BF02060885.Search in Google Scholar

Lenzi, E. K., M. A. F. Dos Santos, D. S. Vieira, R. S. Zola, and H. V Ribeiro. 2016. “Solutions for a Sorption Process Governed by a Fractional Diffusion Equation.” Physica A: Statistical Mechanics and Its Applications 443: 32–41. doi:10.1016/j.physa.2015.09.043.Search in Google Scholar

Lenzi, E. K., H. V. Ribeiro, J. Martins, M. K. Lenzi, G. G. Lenzi, and S. Specchia. 2011. “Non-Markovian Diffusion Equation and Diffusion in a Porous Catalyst.” Chemical Engineering Journal 172: 1083–87. doi:10.1016/j.cej.2011.06.074.Search in Google Scholar

Micke, A., M. Bülow, and M. Kočiřik. 1994. “Zero Length Column Chromatography to Characterise Microporous Sorbents by Means of Kinetic Data.” Berichte der Bunsengesellschaft für Physikalische Chemie 98: 242–48. doi:10.1002/bbpc.19940980218.Search in Google Scholar

Pablo, H., S. Schuller, M. J. Toplis, E. Gouillart, S. Mostefaoui, T. Charpentier, and M. Roskosz. 2017. “Multicomponent Diffusion in Sodium Borosilicate Glasses.” Journal of Non-Crystalline Solids 478: 29–40. doi:10.1016/j.jnoncrysol.2017.10.001.Search in Google Scholar

Roubinet, D., H. -H. Liu, and J. -R. de Dreuzy. 2010. “A New Particle-Tracking Approach to Simulating Transport in Heterogeneous Fractured Porous Media.” Water Resources Research 46: n/a–n/a. doi:10.1029/2010WR009371.Search in Google Scholar

Saxton, M. J. 2008. “Single-Particle Tracking: Connecting the Dots.” Nature Methods 5: 671–72. doi:10.1038/nmeth0808-671.Search in Google Scholar PubMed

Shen, H., L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, and C. F. Landes. 2017. “Single Particle Tracking: From Theory to Biophysical Applications.” Chemical Reviews 117: 7331–76. doi:10.1021/acs.chemrev.6b00815.Search in Google Scholar PubMed

Silva, J. A. C., and A. E. Rodrigues. 2015. “Limitations of the Zero-Length Column Technique to Measure Diffusional Time Constants in Microporous Adsorbents.” Chemical Engineering & Technology 38: 2335–39. doi:10.1002/ceat.201500252.Search in Google Scholar

Soukup, K., V. Hejtmánek, and O. Šolcová. 2014. “Evaluation of Mass Transport Properties of the Advanced Medical-Interesting Porous Solids.” WSEAS Transactions on Heat and Mass Transfer 9: 102–10.Search in Google Scholar

Soukup, K., P. Schneider, and O. Šolcová. 2008a. “Wicke–Kallenbach and Graham’s Diffusion Cells: Limits of Application for Low Surface Area Porous Solids.” Chemical Engineering Science 63: 4490–93. doi:10.1016/j.ces.2008.06.020.Search in Google Scholar

Soukup, K., P. Schneider, and O. Šolcová. 2008b. “Comparison of Wicke–Kallenbach and Graham’s Diffusion Cells for Obtaining Transport Characteristics of Porous Solids.” Chemical Engineering Science 63: 1003–11. doi:10.1016/j.ces.2007.10.032.Search in Google Scholar

Trejbal, J., and M. Zapletal. 2017. “A Method for Estimation of Transport Properties of ZSM-5 Zeolite.” Chemical Papers 71: 795–801. doi:10.1007/s11696-016-0083-6.Search in Google Scholar

Wang, B., S. M. Anthony, S. C. Bae, and S. Granick. 2009. “Anomalous yet Brownian.” Proceedings of the National Academy of Sciences of the United States of America 106: 15160–64. doi:10.1073/pnas.0903554106.Search in Google Scholar

Wang, B., J. Kuo, S. C. Bae, and S. Granick. 2012. “When Brownian Diffusion Is Not Gaussian.” Nature Materials 11: 481–85. doi:10.1038/nmat3308.Search in Google Scholar

Zoppou, C., and J. H. Knight. 1999. “Analytical Solution of a Spatially Variable Coefficient Advection–Diffusion Equation in up to Three Dimensions.” Applied Mathematical Modelling 23: 667–85. doi:10.1016/S0307-904X(99)00005-0.Search in Google Scholar

Received: 2018-06-17
Revised: 2018-10-07
Accepted: 2018-12-05
Published Online: 2018-12-12

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2018-0152/html
Scroll to top button