Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

6 Issues per year


IMPACT FACTOR 2016: 0.623
5-year IMPACT FACTOR: 0.761

CiteScore 2016: 0.58

SCImago Journal Rank (SJR) 2016: 0.224
Source Normalized Impact per Paper (SNIP) 2016: 0.297

Online
ISSN
1542-6580
See all formats and pricing
More options …

Gaseous Hydrocarbon Synfuels from Renewable Electricity via H2/CO2-Flexibility of Fixed-Bed Catalytic Reactors

Maria Iglesias Gonzalez
  • Corresponding author
  • Karlsruhe Institute of Technology, KIT, Engler-Bunte-Institut, Fuel Technology, Engler –Bunte-Ring, 1, 76131 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Georg Schaub
  • Karlsruhe Institute of Technology, KIT, Engler-Bunte-Institut, Fuel Technology, Engler –Bunte-Ring, 1, 76131 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-10 | DOI: https://doi.org/10.1515/ijcre-2014-0135

Abstract

The increased generation of renewable electricity (wind, solar), due to its fluctuating characteristic, leads to an increasing storage demand. A potential storage technology is the conversion of electrical energy into chemical energy (e.g. in form of gaseous hydrocarbons), which can be easily stored and distributed in an existing natural gas grid. CO2 is the C-source of choice, from biogas plants or industrial processes, making possible the production and use of C-based fuels without increasing the CO2 emissions into the atmosphere. The combination of Fischer–Tropsch synthesis and CO2 shift reaction, using iron-based catalyst, offers the possibility to produce substitute natural gas (SNG) components from CO2. Due to the fluctuating nature of hydrogen production from renewable electrical energy, advantages can be identified if the chemical reactor is operated under variable load conditions. The aim of the present study is to evaluate the flexibility of a catalytic synthesis reactor as a potential component in a future energy system with a high contribution of renewable energy. The hydrogenation of CO2 to gaseous components is studied in a fixed-bed lab-scale reactor to determine kinetic parameters and hydrocarbon product distribution. Results from the experimental work are implemented in the mathematical model and are the basis for the conceptual design of the catalytic fixed-bed reactor able to operate under variable load conditions.

Keywords: fixed-bed reactor; partial-load; flexibility; CO2-Fischer–Tropsch; renewable energy

References

  • 1. AG Energiebilanzen. 2014. Access online 29.09.2014, www.ag-energiebilanzen.de/; http://www.ag-energiebilanzen.de/

  • 2. Brunner C, Teufel F. Flexibility in energy systems with a high share of fluctuating renewable energy sources. Green 2013;3:59–67.Google Scholar

  • 3. Jarass L, Obermair GM, Voigt W. Windendergie-zuverlässige integration in die energieversorgung, 2.aufl. Berlin: Springer, 2009.Google Scholar

  • 4. Droste-Franke B, Paal BP, Rehtanz C, Sauer DU, Schneider JP, Schreurs M, et al. Balancing renewable electricity – energy storage, demand size management, and network extension. Berlin: Springer, 2012.Google Scholar

  • 5. Smolinka T, Günther M, Garche J. Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien, NOW-Studie Rev.1, 2011. www.now-gmbh.de

  • 6. Deutsche Energie-Agentur (Dena). Integration erneuerbaren Stroms in das Erdgasnetz, 2012. www.powertogas.info/power-to-das/energiesystemderZukunft.html

  • 7. Jess A, Kaiser P, Kern C, Unde RB, Olshausen C. Considerations concerning the energy demand and energy mix for global welfare and stable ecosystems. Chem Ing Tech 2011;83:1777–91.Google Scholar

  • 8. Weimer T, Schaber K, Specht M, Bandi A. Methanol from atmospheric carbon dioxide: a liquid zero emission fuel for the future. Energy Convers Manage 1996;37:1351–6.Google Scholar

  • 9. Zeman F. Energy and material balance of CO2 capture from ambient air. Environ Sci Technol 2007;41:7558–63.Google Scholar

  • 10. Riedel T, Schaub G, Jun KW, Lee KW. Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst. Ind Eng Chem Res 2001;40:1355–63.Google Scholar

  • 11. Iglesias Gonzalez M, de Vries C, Claeys M, Schaub G. Chemical energy storage in gaseous hydrocarbons via iron Fischer–Tropsch synthesis from H2/CO2—kinetics, selectivity and process considerations. Catal Today 2015;242:184–92. DOI: CrossrefWeb of ScienceGoogle Scholar

  • 12. Zimmerman WH, Bukur DB. Reaction kinetics over iron catalysts used for the Fischer-Tropsch synthesis. Can J Chem Eng 1990;68:292–30.Google Scholar

  • 13. Boreskov GK, Matros YS. Unsteady-state performance of heterogeneous catalytic reactions. Catal Rev Sci Eng 1983;25:551–90.Google Scholar

  • 14. Lox ES, Lindner D, Engler BH. Transient phenomena in three-way catalysis. In: Weijnen MP, Drinkenburg AA, editors. Precision process technology. Springer Science and Business Media Dordrecht, 1993:463–72. ISBN: 978-94-010-4772-2

  • 15. Matros YS. Catalytic process under Unsteady-State conditions. In: Matros YS, editors. Stud Surf Sci Catal 1989;43. ISBN: 978-0-444-87116-9

  • 16. Marwood M, Doepper R, Renken A. Modeling of surface intermediates under forced periodic conditions applied to CO2 methanation. Can J Chem Eng 1996;74:660–3. DOI: CrossrefGoogle Scholar

  • 17. Silveston P, Hudgins RR, Renken A. Periodic operation of catalytic reactors-introduction and overview. Catal Today 1995;25:91–112.Google Scholar

  • 18. Adesina AA, Hudgins RR, Silveston PL. Fischer-tropsch synthesis under periodic operation. Catal Today 1995;25:127–14. DOI: CrossrefGoogle Scholar

  • 19. Dautzenberg van FM, Helle JN, Santen RA, Verbeek H. Pulse-technique analysis of the kinetics of the fischer- tropsch reaction. J Catal 1977;50:8–14.Google Scholar

  • 20. Feimer JL, Silveston PL, Hudgins RR. Influence of forced cycling on the Fischer-Tropsch synthesis. Part I. Response to feed concentration step-changes. Can J Chem Eng 1984;62:241–8.Google Scholar

  • 21. Feimer JL, Silveston PL, Hudgins RR. Influence of forced cycling on the Fischer-Tropsch synthesis. Part II. Response to feed concentration square-waves. Can J Chem Eng 1985;63:86–92.Google Scholar

  • 22. Stankiewicz A, Kuczynski M. An industrial view on the dynamic operation of chemical converters, chemical engineering and processing. Process Intensif 1995;34:367–77.Google Scholar

  • 23. Güttel R. Study of unsteady-state operation of methanation by modeling and simulation. Chem Eng Technol 2013;36:1675–82.Google Scholar

  • 24. Rönsch S, Matthischke S, Müller M, Eichler P. Dynamic simulation of fixed-bed methanation reactors. Chem Ing Tech 2014;86:1198–204.Google Scholar

  • 25. Brian PL, Baddour RF, Eymery JP. Transient behaviour of an ammonia synthesis reactor. Chem Eng Sci 1965;20:297–310.Google Scholar

  • 26. Doesburg V, De Jong WA. Transient behaviour of an adiabatic fixed-bed methanator—I: experiments with binary feeds of CO or CO2 in hydrogen. Chem Eng Sci 1976;31:45–51.Google Scholar

  • 27. Franks RGE. Modeling and simulation in chemical engineering. New York: Wiley, 1972.Google Scholar

  • 28. Doesburg V, De Jong WA. Transient behaviour of an adiabatic fixed-bed methanator—II: methanation of mixtures of carbon monoxide and carbon dioxide. Chem Eng Sci 1976;31:53–8.Google Scholar

  • 29. Eigenberger G. Stability and dynamics of heterogeneous catalytic reaction systems. Int Chem Eng 1981;21:17–28.Google Scholar

  • 30. Luyben W. Chemical reactor design and control. New York: Wiley, 2007.Google Scholar

  • 31. Stankiewicz A, Eigenberger G. Dynamic modelling of multitubular catalytic reactors. Chem Eng Technol 1991;14:414–20. http://www.now-gmbh.de/Google Scholar

  • 32. Jones WE, Wilson JA. An introduction to process flexibility part 2: recycle loop with reactor. Chem Eng Educ 1998;32:224–9.Google Scholar

  • 33. Dry ME, Steynberg AP. Commercial FT process aplications. Stud Surf Sci Catal 2004;152:406–81.Google Scholar

  • 34. Jaisathaporn P, Luyben W. Steady-state economic comparison of alternative tubular reactor systems. Ind Eng Chem Res 2003;42:3304–20.Google Scholar

  • 35. Aicher T, Iglesias Gonzalez M, Schaub G, Götz M. Betrachtungen des gesamtsystems im hinblick auf dynamik und prozessintegration (teilprojekt 5). Research project „speicherung elektrischer energie aus regenerativen quellen im erdgasnetz – H2O-elektrolyse und synthese von gaskomponenten“. DVGW-Zeitschrift: Energie | Wasser-Praxis 2014;65:51–5.Google Scholar

  • 36. E ENTSO. European network of transmission system operators for electricity. 2014. Access online: March 2014. www.entsoe.eu/data/data-portal/consumption/

  • 37. EEX. German transmission system operators. 2014. access online: March 2014, www.transparency.eex.com

  • 38. TENNET. 2014. Access online: March 2014 www.tennettso.de; http://www.tennettso.de/

  • 39. Jess A, Popp R, Hedden K. Fischer–tropsch-synthesis with nitrogen-rich syngas: fundamentals and reactor design aspects. Appl Catal A Gen 1999;186:321–42.Google Scholar

  • 40. Iglesias Gonzalez M, Schaub G. Fischer-Tropsch synthesis with H2/CO2- approach to study catalyst behavior under transient conditions. Chem Ing Tech. 2015 Submitted. DOI: Crossref

About the article

Published Online: 2015-04-10

Published in Print: 2016-10-01


Funding: This work was financially supported by the German Bundesministerium für Bildung und Wissenschaft (BMBF, FKZ: 033RC1010A).


Citation Information: International Journal of Chemical Reactor Engineering, ISSN (Online) 1542-6580, ISSN (Print) 2194-5748, DOI: https://doi.org/10.1515/ijcre-2014-0135.

Export Citation

©2016 by De Gruyter. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in