Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 7

Optimization of Process Parameters for Reactive Separation of Gallic Acid

Kalpana Rewatkar
  • Advance Separation and Analytical Laboratory, Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diwakar Z. Shende
  • Corresponding author
  • Advance Separation and Analytical Laboratory, Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kailas L. Wasewar
  • Advance Separation and Analytical Laboratory, Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-24 | DOI: https://doi.org/10.1515/ijcre-2017-0133

Abstract

Reactive extraction of gallic acid (GA) from aqueous solution was studied using extractant TOA and Aliquat 336 in hexanol and a comparative analysis were made for optimum extractant-diluent system with two factor central composite design. The model equations were developed using 13 experimentations, each with TOA and Aliquat 336. TOA and Aliquat 336 gave antagonistic and synergistic effects respectively for extraction of GA. The optimum conditions were observed as CTOA = 8.6 %, CGA0 = 2.9 g/L and CALQ = 33.2 %, CGA0 = 3 g/L with experimental extraction of 92.2 % and 96.5 % respectively. Lesser TOA and its non-toxicity for extraction of GA as compared to Aliquat 336 suggest TOA as better candidate in the prevailing conditions.

This article offers supplementary material which is provided at the end of the article.

Keywords: reactive extraction; Gallic acid; Tri-n-octyl amine; Aliquat 336; response surface methodology; optimization

References

  • Agalias, A., P. Magiatis, A.L. Skaltsounis, E. Mikros, A. Tsarbopoulos, E. Gikas, I. Spanos, and T. Manios. 2007. “A New Process for the Management of Olive Oil Mill Waste Water and Recovery of Natural Antioxidants.” Journal of Agricultural and Food Chemistry 55: 2671–2676. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Ahmad, A.L., C.J.C. Derek, and M.M.D. Zulkali. 2008. “Optimization of Thaumatin Extraction by Aqueous Two-Phase System (ATPS) Using Response Surface Methodology (RSM).” Separation and Purification Technology 62: 702–708. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Cacace, J.E., and G. Mazza. 2003. “Optimization of Extraction of Anthocyanins from Black Currants with Aqueous Ethanol.” Journal of Food Science 68: 240–248. doi:.CrossrefGoogle Scholar

  • Datta, D., and S. Kumar. 2011. “Reactive Extraction of Glycolic Acid Using Tri-n-Butyl Phosphate and Tri-n-Octylamine in Six Different Diluents: Experimental Data and Theoretical Predictions.” Industrial & Engineering Chemistry Research 50: 3041–3048. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Ena, A., C. Pintucci, and P. Carlozzi. 2012. “The Recovery of Polyphenols from Olive Mill Waste Using Two Adsorbing Vegetable Matrices.” Journal of Biotechnology 157: 573–577. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Galanakis, C.M., E. Tornberg, and V. Gekas. 2010. “Clarification of High-Added Value Products from Olive Mill Wastewater.” Journal of Food Engineering 99: 190–197. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Ge, Y., Y. Ni, H. Yan, Y. Chen, and T. Cai. 2002. “Optimization of the Supercritical Fluid Extraction of Natural Vitamin E from Wheat Germ Using Response Surface Methodology.” Journal of Food Science 67: 239–243. doi:.CrossrefGoogle Scholar

  • Han, D.H., and W.H. Hong. 1998. “Water-Enhanced Solubilities of Lactic Acid in Reactive Extraction Using Trioctylamine/Various Active Diluents Systems.” Separation Science and Technology 33: 271–281. doi:.CrossrefGoogle Scholar

  • Hsu, C.-L., W.-H. Lo, and G.-C. Yen. 2007. “Gallic Acid Induces Apoptosis in 3T3-L1 Pre-Adipocytes via a Fas- and Mitochondrial-Mediated Pathway.” Journal of Agricultural and Food Chemistry 55: 7359–7365. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Ingale, MN, and VV. Mahajani. 1996. “Recovery of Carboxylic Acids, C-C, from an Stream Using Tributylphosphate (TBP): Effect Aqueous Waste of Presence of Inorganic Acids and Their Sodium Salts.” Separation Science and Technology 6: 1–7.CrossrefGoogle Scholar

  • Jun, YS, EZ Lee, YS Huh, YK Hong, WH Hong, and SY. Lee. 2007. “Kinetic Study for the Extraction of Succinic Acid with TOA in Fermentation Broth; Effects of pH, Salt and Contaminated Acid.” Biochemical Engineering Journal 36: 8–13. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Kar, B., R. Banerjee, and B.C. Bhattacharyya. 1999. “Microbial Production of Gallic Acid by Modified Solid State Fermentation.” Journal of Industrial Microbiology and Biotechnology 23: 173–177. doi:.CrossrefGoogle Scholar

  • Keshav, A., Kailas, L. Wasewar, and S. Chand. 2009a. “Reactive Extraction of Propionic Acid Using Tri-n-Octylamine.” Chemical Engineering Communicable 197: 606–626.CrossrefGoogle Scholar

  • Keshav, A., K.L. Wasewar, and S. Chand. 2008. “Extraction of Propionic Acid with Tri-N-Octyl Amine in Different Diluents.” Separation and Purification Technology 63: 179–183. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Keshav, A., K.L. Wasewar, and S. Chand. 2009. “Extraction of Propionic Acid from Model Solutions: Effect of pH, Salts, Substrate, and Temperature.” AIChE Journal 55: 1705–1711. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Keshav, A., K.L. Wasewar, and S. Chand. 2009b. “Recovery of Propionic Acid from an Aqueous Stream by Reactive Extraction: Effect of Diluents.” Desalination and Water Treatment 3: 91–98. doi:.CrossrefGoogle Scholar

  • Kilic, M., E. Bayraktar, S. Ates, and U. Mehmetoglu. 2002. “Investigation of Extractive Citric Acid Fermentation Using Response-Surface Methodology.” Process Biochemistry 37: 759–767. doi:.CrossrefGoogle Scholar

  • Li, J., S. Ding, and X. Ding. 2007. “Optimization of the Ultrasonically Assisted Extraction of Polysaccharides from Zizyphus Jujuba Cv Jinsixiaozao.” Journal of Food Engineering 80: 176–183. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Liyanapathirana, C., and F. Shahidi. 2005. “Optimization of Extraction of Phenolic Compounds from Wheat Using Response Surface Methodology.” Food Chemistry 93: 47–56. doi:.CrossrefGoogle Scholar

  • Mahfud, F.H., F.P. Van Geel, R.H. Venderbosch, and H.J. Heeres. 2008. “Acetic Acid Recovery from Fast Pyrolysis Oil. An Exploratory Study on Liquid-Liquid Reactive Extraction Using Aliphatic Tertiary Amines.” Separation Science and Technology 43: 3056–3074. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Mahoney, N., and R.J. Molyneux. 2004. “Phytochemical Inhibition of Aflatoxigenicity in Aspergillus Flavus by Constituents of Walnut (Juglans Regia).” Journal of Agricultural and Food Chemistry 52: 1882–1889. doi:.CrossrefGoogle Scholar

  • Montgomery, D. 2001. Design and Analysis of Experiments, 5th ed. New Jersey, New York: John Wiley & Sons Inc.Google Scholar

  • Pal, D., and A. Keshav. 2014. “Extraction Equilibria of Pyruvic Acid Using Tri ‑ N ‑ Butyl Phosphate : In Fl Uence of Diluents.” Journal of Chemical & Engineering Data 59: 2709–2716.CrossrefGoogle Scholar

  • Pal, D., and A. Keshav. 2015. “Kinetics of Reactive Extraction of Pyruvic Acid Using Tributylamine Dissolved in N-Butyl Acetate.” International Journal of Chemical Reactor Engineering 13: 63–69. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Pal, D., A. Tripathi, A. Shukla, K.R. Gupta, and A. Keshav. 2015. “Reactive Extraction of Pyruvic Acid Using Tri-N-Octylamine Diluted in Decanol/Kerosene: Equilibrium and Effect of Temperature.” Journal of Chemical & Engineering Data 60: 860–869. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Poole, L.J., and C.J. King. 1991. “Regeneration of Carboxylic Acid-Amine Extracts by Back-Extraction with an Aqueous Solution of a Volatile Amine.” Industrial & Engineering Chemistry Research 30: 923–929. doi:.CrossrefGoogle Scholar

  • San-Martin, M, C Pazos, and J. Coca. 1992. “Reactive Extraction of Lactic Acid with Alamine 336 in Presence of Salts and Lactose.” Journal of Chemical Technology & Biotechnology 54: 1–6. doi:.CrossrefGoogle Scholar

  • Thakre, N., A.K. Prajapati, S.P. Mahapatra, A. Kumar, A. Khapre, and D. Pal. 2016. “Modeling and Optimization of Reactive Extraction of Citric Acid.” Journal of Chemical & Engineering Data 61: 2614–2623. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Tong, Y., M. Hirata, H. Takanashi, and T. Hano. 1999. “Back Extraction of Lactic Acid with Microporous Hollow Fiber Membrane.” Journal of Membrane Science 157: 189–198. doi:.CrossrefGoogle Scholar

  • Trevino-Cueto, B., M. Luis, J.C. Contreras-Esquivel, R. Rodriguez, A. Aguilera, and C.N. Aguilar. 2007. “Gallic Acid and Tannase Accumulation during Fungal Solid State Culture of a Tannin-Rich Desert Plant (Larrea Tridentata Cov.).” Bioresource Technology 98: 721–724. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Wasewar, K.L., and D.Z. Shende. 2011. “Reactive Extraction of Caproic Acid Using Tri- N -Butyl Phosphate in Hexanol, Octanol, and Decanol.” Journal of Chemical & Engineering Data 56: 288–297. doi:.CrossrefWeb of ScienceGoogle Scholar

  • Werner, R.A., A. Rossmann, C. Schwarz, A. Bacher, H.-L. Schmidt, and W. Eisenreich. 2004. “Biosynthesis of Gallic Acid in Rhus Typhina: Discrimination between Alternative Pathways from Natural Oxygen Isotope Abundance.” Phytochemistry 65: 2809–2813. doi:.CrossrefGoogle Scholar

  • Yang, S.T., S.A. White, and S.T. Hsu. 1991. “Extraction of Carboxylic Acids with Tertiary and Quaternary Amines: Effect of pH.” Industrial & Engineering Chemistry Research 30: 1335–1342. doi:.CrossrefGoogle Scholar

  • Yunhai, S., S. Houyong, L. Deming, L. Qinghua, C. Dexing, and Z. Yongchuan. 2006. “Separation of Glycolic Acid from Glycolonitrile Hydrolysate by Reactive Extraction with Tri-N-Octylamine.” Separation and Purification Technology 49: 20–26. doi:.CrossrefGoogle Scholar

About the article

Received: 2017-07-06

Accepted: 2018-04-08

Revised: 2018-03-24

Published Online: 2018-04-24


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 7, 20170133, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0133.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in