Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Synthesis of MgO/TiO2 Nanocomposite and Its Application in Photocatalytic Dye Degradation

K Sathish Kumar
  • Corresponding author
  • Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam 603110, Tamil Nadu, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K R Rohit Narayanan
  • Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam 603110, Tamil Nadu, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S Siddarth
  • Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam 603110, Tamil Nadu, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R Pavan Kumar
  • Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam 603110, Tamil Nadu, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R Badri Narayan
  • Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam 603110, Tamil Nadu, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R Goutham
  • Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam 603110, Tamil Nadu, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V Samynaathan
  • Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam 603110, Tamil Nadu, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-23 | DOI: https://doi.org/10.1515/ijcre-2017-0136

Abstract

The application of nanoparticles in dye degradation is one of the trending arenas of research in the present day world. In this work, we report a novel route to synthesise MgO/TiO2 metal oxide nanocomposite by microemulsion technique and its application in photocatalytic dye degradation. Oil in water microemulsion was prepared using Span 80 and Tween 80 as surfactants whose proportion was regulated using hydrophilic and lipophilic Balance (HLB). The obtained microemulsion was then mechanically stirred and calcined to obtain the nanocomposite. The as-prepared nanocomposites were characterized using X Ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The prepared nanoparticles exhibited remarkable potential to degrade azo dye (Methyl red) under UV-Visible light irradiation. The effect of catalyst in the degradation was studied for different concentrations of dye (20, 40, 60, 80, 100 mg/L) and different loadings of the catalyst (0.4, 0.6, 0.8, 1.0, 1.2 g/L) so as to determine the optimum catalyst load. The consistency of the obtained data was compared with the first order reaction rate expression. Quasi steady state model was used in fitting the data and the kinetic constants were evaluated. Also, the degradation efficiency of MgO/TiO2 nanocomposite was compared with the degradation efficiency of TiO2 nanoparticles synthesized by microemulsion method.

Keywords: nanocomposite; microemulsion; micelles; quasi steady state model; photocatalytic dye degradation; azo dye

References

  • Martin Andersson, Lars Österlund, and Sten Ljungström, Anders Palmqvist. 2002 . “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol.” Journal of Physical Chemistry 106 (41): 10674– 10679 . DOI: .CrossrefGoogle Scholar

  • Adamek, E., W. Baran, J. Ziemiańska, and A. Sobczak. 2013. “The Comparison of Photocatalytic Degradation and Decolorization Processes of Dyeing Effluents.” International Journal Photoenergy 2013: 1–11. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Bandara, J., C. Hadapangoda, and W. Jayasekera. 2004. “TiO2/MgO Composite Photocatalyst: The Role of MgO in Photoinduced Charge Carrier Separation.” Applications Catal B Environment 50, 83–88. doi: .CrossrefGoogle Scholar

  • Bayal, N., and P. Jeevanandam. 2014. “Synthesis of TiO2−MgO Mixed Metal Oxide Nanoparticles via a Sol−Gel Method and Studies on Their Optical Properties.” Ceram International 40, 15463–15477. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Bethi, B., S.H. Sonawane, B.A. Bhanvase, and S.P. Gumfekar. 2016. “Nanomaterials-Based Advanced Oxidation Processes for Wastewater Treatment: A Review.” Chemical Engineering Processing Processing Intensif 109, 178–189. doi: .CrossrefGoogle Scholar

  • Bickley, R.I., T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, and R.J.D. Tilley. 1991. “A Structural Investigation of Titanium Dioxide Photocatalysts, J.” Solid State Chemical 92, 178–190. doi: .CrossrefGoogle Scholar

  • Channei, D., B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant. 2014. “Photocatalytic Degradation of Methyl Orange by CeO2 and Fe–Doped CeO2 Films under Visible Light Irradiation.” Sciences Reports 4, 5757. doi: .CrossrefGoogle Scholar

  • Chen, X., Z. Wu, D. Liu, and Z. Gao. 2017. “Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes.” Nanoscale Researcher Letters 12, 143. doi: .CrossrefGoogle Scholar

  • Fu, J.-R., J. Zheng, W.-J. Fang, C. Chen, C. Cheng, R.-W. Yan, S.-G. Huang, and C.-C. Wang. 2015. “Synthesis of Porous Magnetic Fe3O4/Fe@ZnO Core–Shell Heterostructure with Superior Capability for Water Treatment.” Journal Alloys Compd 650, 463–469. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Izawa, S. 1962. “Methylene Blue Inhibition Of Photosynthesis In Rhodopseudomonas Palustris.” Plant & Cell Physiology 3, 43–51. doi: .CrossrefGoogle Scholar

  • Jorfi, S., B. Kakavandi, H.R. Motlagh, M. Ahmadi, and N. Jaafarzadeh. 2017. “A Novel Combination of Oxidative Degradation for Benzotriazole Removal Using TiO2 Loaded on FeIIFe2IIIO4@C as an Efficient Activator of Peroxymonosulfate.” Applications Catal B Environment 219, 216–230. doi: .CrossrefGoogle Scholar

  • Juma, A.O., E.A.A. Arbab, C.M. Muiva, L.M. Lepodise, and G.T. Mola. 2017. “Synthesis and Characterization of CuO-NiO-ZnO Mixed Metal Oxide Nanocomposite.” Journal Alloys Compd 723, 866–872. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Kaushik, P., and A. Malik. 2009. “Fungal Dye Decolourization: Recent Advances and Future Potential.” Environment International 35, 127–141. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Khan, M.M., S.F. Adil, and A. Al-Mayouf. 2015. “Metal Oxides as Photocatalysts.” Journal Saudi Chemical Social 19, 462–464. doi: .CrossrefGoogle Scholar

  • Kurt, U., O. Apaydin, and M.T. Gonullu. 2007. “Reduction of COD in Wastewater from an Organized Tannery Industrial Region by Electro-Fenton Process.” Journal of Hazardous Materials 143, 33–40. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Lachheb, H., E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann. 2002. “Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by UV-irradiated Titania.” Applications Catal B Environment 39, 75–90. doi: .CrossrefGoogle Scholar

  • Lu, C.-H., W.-H. Wu, and R.B. Kale. 2008. “Microemulsion-Mediated Hydrothermal Synthesis of Photocatalytic TiO2 Powders.” Journal of Hazardous Materials 154, 649–654. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Mandal, T., S. Maity, D. Dasgupta, and S. Datta. 2010. “Advanced Oxidation Process and Biotreatment: Their Roles in Combined Industrial Wastewater Treatment.” Desalination 250, 87–94. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Mittal, A., J. Mittal, A. Malviya, and V.K. Gupta. 2009. “Adsorptive Removal of Hazardous Anionic Dye “Congo Red” from Wastewater Using Waste Materials and Recovery by Desorption.” Journal Colloid Interface Sciences 340, 16–26. doi: .CrossrefGoogle Scholar

  • Muhd Julkapli, N., S. Bagheri, and S Bee Abd Hamid. 2014. “Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes.” TheScientificWorldJournal 2014, 692307. doi: .CrossrefGoogle Scholar

  • Narayan, R.B., R. Goutham, B. Srikanth, and K.P. Gopinath. 2016. “A Novel Nano-Sized Calcium Hydroxide Catalyst Prepared from Clam Shells for the Photodegradation of Methyl Red Dye.” Journal Environment Chemical Engineering. doi: .CrossrefGoogle Scholar

  • Pandit, V.U., S.S. Arbuj, Y.B. Pandit, S.D. Naik, S.B. Rane, U.P. Mulik, S.W. Gosavi, and B.B. Kale. 2015. “Solar Light Driven Dye Degradation Using Novel Organo–Inorganic (6,13-Pentacenequinone/Tio 2 ) Nanocomposite.” RSC Advances 5, 10326–10331. doi: .CrossrefGoogle Scholar

  • Parvathi V, P., T. Jaiakumar, M. Umadevi, J. Mayandi, and G.V. Sathe. 2016. “Synergistic Effect of MgO/Ag Co-Doping on TiO2 for Efficient Antibacterial Agents.” Materials Letters 184, 82–87. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Saleh, T.A., and V.K. Gupta. 2014. “Processing Methods, Characteristics and Adsorption Behavior of Tire Derived Carbons: A Review, Adv.” Colloid Interface Sciences 211, 93–101. doi: .CrossrefGoogle Scholar

  • Sanchez-Dominguez, M., G. Morales-Mendoza, M.J. Rodriguez-Vargas, C.C. Ibarra-Malo, A.A. Rodriguez-Rodriguez, A. V. Vela-Gonzalez, S.A. Perez-Garcia, and R. Gomez. 2015. “Synthesis of Zn-Doped TiO2 Nanoparticles by the Novel Oil-In-Water (O/W) Microemulsion Method and Their Use for the Photocatalytic Degradation of Phenol.” Journal Environment Chemical Engineering 3, 3037–3047. doi: .CrossrefGoogle Scholar

  • Saravanan, R., F. Gracia, M.M. Khan, V. Poornima, V.K. Gupta, V. Narayanan, and A. Stephen. 2015. “ZnO/CdO Nanocomposites for Textile Effluent Degradation and Electrochemical Detection.” Journal Molecular Liq 209, 374–380. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Srikanth, B., R. Goutham, R. Badri Narayan, A. Ramprasath, K.P. Gopinath, and A.R. Sankaranarayanan. 2017. “Recent Advancements in Supporting Materials for Immobilised Photocatalytic Applications in Waste Water Treatment.” Journal Environment Manage 200. doi: .CrossrefGoogle Scholar

  • Tan, T.T.Y., S. Liu, Y. Zhang, M.-Y. Han, and S.T. Selvan. 2011. Microemulsion Preparative Methods (Overview).Google Scholar

  • Van Driel, B.A., P.J. Kooyman, K.J. Van Den Berg, A. Schmidt-Ott, and J. Dik. 2016. “A Quick Assessment of the Photocatalytic Activity of TiO2 Pigments — From Lab to Conservation Studio!.” Microchem Journal 126, 162–171. doi: .CrossrefWeb of ScienceGoogle Scholar

  • Yang, X., W. Chen, J. Huang, Y. Zhou, Y. Zhu, and C. Li. 2015. “Rapid Degradation of Methylene Blue in a Novel Heterogeneous Fe3O4 @Rgo@Tio2-Catalyzed photo-Fenton System.” Sciences Reports 5, 10632. doi: .CrossrefGoogle Scholar

  • Yu, J.C., L. Wu, J. Lin, P. Li, and Q. Li. 2003. “Microemulsion-Mediated Solvothermal Synthesis of Nanosized CdS-sensitized TiO2 Crystalline Photocatalyst.” Chemical Communicable 0, 1552. doi: .CrossrefGoogle Scholar

  • Zhang, L., C. Dai, X. Zhang, Y. Liu, and J. Yan. 2016. “Synthesis and Highly Efficient Photocatalytic Activity of Mixed Oxides Derived from ZnNiAl Layered Double Hydroxides.” Transactions Nonferrous Met Social China 26, 2380–2389. doi: .CrossrefGoogle Scholar

  • Zhang, M., and B. Gao. 2013. “Removal of Arsenic, Methylene Blue, and Phosphate by biochar/AlOOH Nanocomposite.” Chemical Engineering Journal 226, 286–292. doi: .CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-07-10

Accepted: 2018-05-13

Revised: 2018-05-09

Published Online: 2018-06-23


This work was supported by SSN Trust, Grant Number: Grant of Indian rupess 25,000.


Citation Information: International Journal of Chemical Reactor Engineering, 20170136, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0136.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in