Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Novel Solutions in Modeling of Anaerobic Digestion Process - Two-Phase AD Models Development and Comparison

Karol Postawa
  • Corresponding author
  • Department of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-14 | DOI: https://doi.org/10.1515/ijcre-2017-0139

Abstract

This work focuses on Two Phase Anaerobic Digestion – a novel approach to split reactions’ chain in two separated tanks, each with specialized microbe community to achieve the best possible efficiency for each part of conversion. More specifically, the article tackle the topic of evaluation the possibility to adapt a mathematical model, previously dedicated for Autogenerative High Pressure Digestion (AHPD), to make use of it in simulation of Temperature Phased Anaerobic Digestion (TPAD) process. A comprehensive study of available solutions for biogas production simulation in conventional and TPAD configuration is additionally performed. Basing on its results, a reference model from literature, for comparison purpose is selected. Revisions and modifications, necessary to adjust previously developed model, to TPAD process, are described. Also, additional improvements like redesigned pH calculating algorithm is presented. Finally, the comparison between model predictions, a reference model and pilot-scale data is carried out. The results show that our current model needs further optimization, however even at this stage it provides acceptable results in short-range simulations (not longer than 42 days). Further works should focus on process stability improvement, especially in the thermophilic stage of biogas production. There's an opportunity for innovation as the research shows that requirement of accurate, large-scale optimized TPAD process model, is still not fulfilled.

Keywords: biogas; mathematical modelling; biomethane; two-phase; anaerobic digestion

References

  • Amon, Thomas, Barbara Amon, Vitaliy Kryvoruchko, Andrea Machmüller, Katharina Hopfner-Sixt, Vitomir Bodiroza, Regina Hrbek. et al.. 2007. “Methane Production through Anaerobic Digestion of Various Energy Crops Grown in Sustainable Crop Rotations.” Bioresource Technology 98 (17): 3204–3212. .CrossrefGoogle Scholar

  • Ariunbaatar, Javkhlan, Antonio Panico, Giovanni Esposito, Francesco Pirozzi, and Piet N. L. Lens. 2014. “Pretreatment Methods to Enhance Anaerobic Digestion of Organic Solid Waste.” Applied Energy 123 (June): 143–156. .CrossrefGoogle Scholar

  • Ashino, R., M. Nagase, and R. Vaillancourt. 2000. “Behind and beyond the Matlab ODE Suite.” Computers & Mathematics with Applications 40 (4): 491–512. .CrossrefGoogle Scholar

  • Bacenetti, Jacopo, Marco Negri, Marco Fiala, and González-García Sara. 2013. “Anaerobic Digestion of Different Feedstocks: Impact on Energetic and Environmental Balances of Biogas Process.” Science of the Total Environment 463–464 (October): 541–551. .CrossrefGoogle Scholar

  • Batstone, Damien J., J. Keller, S. V. Irini Angelidaki, S. G. Kalyuzhnyi, Pavlostathis, A Rozzi, W. T. M. Sanders, H. Siegrist, and V. A. Vavilin. 2002. “The IWA Anaerobic Digestion Model No 1 (ADM1).” Water Science and Technology 45 (10): 65–73.CrossrefGoogle Scholar

  • Blumensaat, F., and J. Keller. 2005. “Modelling of Two-Stage Anaerobic Digestion Using the IWA Anaerobic Digestion Model No. 1 (ADM1).” Water Research 39 (1): 171–183. .CrossrefGoogle Scholar

  • Bruni, Emiliano, Anders Peter Jensen, and Irini Angelidaki. 2010. “Comparative Study of Mechanical, Hydrothermal, Chemical and Enzymatic Treatments of Digested Biofibers to Improve Biogas Production.” Bioresource Technology 101 (22): 8713–8717. .CrossrefGoogle Scholar

  • Budzianowski, Wojciech M. 2016. “A Review of Potential Innovations for Production, Conditioning and Utilization of Biogas with Multiple-Criteria Assessment.” Renewable and Sustainable Energy Reviews 54 (February): 1148–1171. .CrossrefGoogle Scholar

  • Budzianowski, Wojciech M., and Karol Postawa. 2017. “Renewable Energy from Biogas with Reduced Carbon Dioxide Footprint: Implications of Applying Different Plant Configurations and Operating Pressures.” Renewable and Sustainable Energy Reviews 68 Part 2 (February): 852–868. .CrossrefGoogle Scholar

  • Demirbas, M. Fatih, and Mehmet Balat. 2009. “Progress and Recent Trends in Biogas Processing.” International Journal of Green Energy 6 (2): 117–142. .CrossrefGoogle Scholar

  • Deppenmeier, Uwe, and Müller Volker. 2007. “Life Close to the Thermodynamic Limit: How Methanogenic Archaea Conserve Energy.” In Bioenergetics, edited by G. Schäfer and H.S. Penefsky, 123–152. Results and Problems in Cell Differentiation 45. Springer: Berlin Heidelberg. .CrossrefGoogle Scholar

  • Diekert, Gabriele, and Gert Wohlfarth. 1994. “Metabolism of Homoacetogens.” Antonie Van Leeuwenhoek 66 (1): 209–221.CrossrefGoogle Scholar

  • Donoso-Bravo, Andrés, Sara Pérez-Elvira, and Fernando Fdz-Polanco. 2015. “Simplified Mechanistic Model for the Two-Stage Anaerobic Degradation of Sewage Sludge.” Environmental Technology 36 (10): 1334–1346. .CrossrefGoogle Scholar

  • Effenberger, Mathias. 2007. Influence of Temperature and Feeding Mode on Digestion and Sanitation Efficiency during Multiple-Stage Anaerobic Treatment of Liquid Dairy Cattle Manure. Munich, Germany: Technische Universität München. https://mediatum.ub.tum.de/doc/627734/627734.pdf.

  • Fezzani, Boubaker, and Ridha Ben Cheikh. 2010. “Two-Phase Anaerobic Co-Digestion of Olive Mill Wastes in Semi-Continuous Digesters at Mesophilic Temperature.” Bioresource Technology 101 (6): 1628–1634. .CrossrefGoogle Scholar

  • Gavala, Hariklia N., Ioannis V Umur Yenal, Peter Westermann Skiadas, and Birgitte K Ahring. 2003. “Mesophilic and Thermophilic Anaerobic Digestion of Primary and Secondary Sludge. Effect of Pre-Treatment at Elevated Temperature.” Water Research 37 (19): 4561–4572. .CrossrefGoogle Scholar

  • Gueguim Kana, E.B., J.K. Oloke, A. Lateef, and M.O. Adesiyan. 2012. “Modeling and Optimization of Biogas Production on Saw Dust and Other Co-Substrates Using Artificial Neural Network and Genetic Algorithm.” Renewable Energy 46 (October): 276–281. .CrossrefGoogle Scholar

  • Hashemi, Shahrzad, Arturo Macchi, Sebastien Bergeron, and Phillip Servio. 2006. “Prediction of Methane and Carbon Dioxide Solubility in Water in the Presence of Hydrate.” Fluid Phase Equilibria 246 (1–2): 131–136. .CrossrefGoogle Scholar

  • Hill, Jason, Erik Nelson, David Tilman, Stephen Polasky, and Douglas Tiffany. 2006. “Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels.” Proceedings of the National Academy of Sciences 103 (30): 11206–11210. .CrossrefGoogle Scholar

  • Keshtkar, Ali Reza, Gity Abolhamd, Behrooz Meyssami, and Hossein Ghaforian. 2003. “Modeling of Anaerobic Digestion of Complex Substrates.” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 22 (2): 61–74.Google Scholar

  • Lauwers, Joost, Ian P Lise Appels, Jan Degrève Thompson, Jan F Van Impe, and Raf Dewil. 2013. “Mathematical Modelling of Anaerobic Digestion of Biomass and Waste: Power and Limitations.” Progress in Energy and Combustion Science 39 (4): 383–402. .CrossrefGoogle Scholar

  • Lay, Jiunn-Jyi, Li Yu-You, and Tatsuya Noike. 1997. “Influences of PH and Moisture Content on the Methane Production in High-Solids Sludge Digestion.” Water Research 31 (6): 1518–1524. .CrossrefGoogle Scholar

  • Lee, Myung-Yeol, Chang-Won Suh, Yong-Tae Ahn, and Hang-Sik Shin. 2009. “Variation of ADM1 by Using Temperature-Phased Anaerobic Digestion (TPAD) Operation.” Bioresource Technology 100 (11): 2816–2822. .CrossrefGoogle Scholar

  • Lemmer, A., Y. Chen, J. Lindner, A.M. Wonneberger, S. Zielonka, H. Oechsner, and T. Jungbluth. 2015. “Influence of Different Substrates on the Performance of a Two-Stage High Pressure Anaerobic Digestion System.” Bioresource Technology 178 (February): 313–318. .CrossrefGoogle Scholar

  • Lindeboom, Ralph E. F., Ivet Ferrer, Jan Weijma, and Jules B Van Lier. 2013. “Silicate Minerals for CO2 Scavenging from Biogas in Autogenerative High Pressure Digestion.” Water Research 47 (11): 3742–3751. .CrossrefGoogle Scholar

  • Lindeboom, Ralph E. F., Ding Lei, Jan Weijma, Caroline M. Plugge, and Jules B. Van Lier. 2014. “Starch Hydrolysis in Autogenerative High Pressure Digestion: Gelatinisation and Saccharification as Rate Limiting Steps.” Biomass and Bioenergy 71 (December): 256–265. .CrossrefGoogle Scholar

  • Lv, Wen, Floyd L Schanbacher, and Yu Zhongtang. 2010. “Putting Microbes to Work in Sequence: Recent Advances in Temperature-Phased Anaerobic Digestion Processes.” Bioresource Technology 101 (24): 9409–9414. .CrossrefGoogle Scholar

  • Lv, Wen, Wenfei Zhang, and Yu Zhongtang. 2013. “Evaluation of System Performances and Microbial Communities of Two Temperature-Phased Anaerobic Digestion Systems Treating Dairy Manure.” Bioresource Technology 143 (September): 431–438. .CrossrefGoogle Scholar

  • Mao, Chunlan, Yongzhong Feng, Xiaojiao Wang, and Guangxin Ren. 2015. “Review on Research Achievements of Biogas from Anaerobic Digestion.” Renewable and Sustainable Energy Reviews 45 (May): 540–555. .CrossrefGoogle Scholar

  • Mattsson, Berit, and Ulf Sonesson. eds. 2003. Environmentally-Friendly Food Processing. Woodhead Publishing in Food Science and Technology. Boca Raton, FL : Cambridge, England: CRC Press; Woodhead Pub.Google Scholar

  • Merlin Christy, P., L. R. Gopinath, and D. Divya. 2014. “A Review on Anaerobic Decomposition and Enhancement of Biogas Production through Enzymes and Microorganisms.” Renewable and Sustainable Energy Reviews 34 167–173. .CrossrefGoogle Scholar

  • Mottet, A., I. Ramirez, H. Carrère, S. Déléris, F. Vedrenne, J. Jimenez, and J. P. Steyer. 2013. “New Fractionation for a Better Bioaccessibility Description of Particulate Organic Matter in a Modified ADM1 Model.” Chemical Engineering Journal 228 (July): 871–881. .CrossrefGoogle Scholar

  • Muller, Mathieu, Julie Jimenez, Maxime Antonini, Yves Dudal, Eric Latrille, Fabien Vedrenne, Jean-Philippe Steyer, and Dominique Patureau. 2014. “Combining Chemical Sequential Extractions with 3D Fluorescence Spectroscopy to Characterize Sludge Organic Matter.” Waste Management 34 (12): 2572–2580. .CrossrefGoogle Scholar

  • Pervin, Hasina M., Paul G Dennis, Hui J Lim, Gene W Tyson, Damien J Batstone, and Philip L Bond. 2013. “Drivers of Microbial Community Composition in Mesophilic and Thermophilic Temperature-Phased Anaerobic Digestion Pre-Treatment Reactors.” Water Research, Microbial Ecology of Drinking Water and Wastewater Treatment 47 (19): 7098–7108. .CrossrefGoogle Scholar

  • Riau, Víctor, M, Ángeles De La Rubia, and Pérez Montserrat. 2010. “Temperature-Phased Anaerobic Digestion (TPAD) to Obtain Class A Biosolids: A Semi-Continuous Study.” Bioresource Technology 101 (8): 2706–2712. .CrossrefGoogle Scholar

  • Riau, Víctor, M, Angeles De La Rubia, Montserrat Pérez, Antonio Martín, and Rafael Borja. 2012. “Modelling of the Temperature-Phased Batch Anaerobic Digestion of Raw Sludge from an Urban Wastewater Treatment Plant.” Journal of Environmental Science and Health, Part A 47 (2): 221–227. .CrossrefGoogle Scholar

  • Salomoni, C., A. Caputo, M. Bonoli, O. Francioso, M. T. Rodriguez-Estrada, and D. Palenzona. 2011. “Enhanced Methane Production in a Two-Phase Anaerobic Digestion Plant, after CO2 Capture and Addition to Organic Wastes.” Bioresource Technology 102 (11): 6443–6448. .CrossrefGoogle Scholar

  • Sánchez-Hernández, E.P., P. Weiland, and R. Borja. 2013. “The Effect of Biogas Sparging on Cow Manure Characteristics and Its Subsequent Anaerobic Biodegradation.” International Biodeterioration & Biodegradation 83 (September): 10–16. .CrossrefGoogle Scholar

  • Shampine, L., and M. Reichelt. 1997. “The MATLAB ODE Suite.” SIAM Journal on Scientific Computing 18 (1): 1–22. .CrossrefGoogle Scholar

  • Siegrist, Hansruedi, Dea Vogt, Jaime L. Garcia-Heras, and Willi Gujer. 2002. “Mathematical Model for Meso- and Thermophilic Anaerobic Sewage Sludge Digestion.” Environmental Science & Technology 36 (5): 1113–1123. .CrossrefGoogle Scholar

  • Sobrino, Fernando Hernández, Carlos Rodríguez Monroy, and Hernández Pérez José Luís. 2010. “Critical Analysis on Hydrogen as an Alternative to Fossil Fuels and Biofuels for Vehicles in Europe.” Renewable and Sustainable Energy Reviews 14 (2): 772–780. .CrossrefGoogle Scholar

  • Stams, A. J. M., C. M. Plugge, F. A. M. De Bok, BHGW Van Houten, P. Lens, H. Dijkman, and J. Weijma. 2005. “Metabolic Interactions in Methanogenic and Sulfate-Reducing Bioreactors.” Water Science and Technology 52 (1–2): 13–20.CrossrefGoogle Scholar

  • Sung, Shihwu, and Harikishan Santha. 2003. “Performance of Temperature-Phased Anaerobic Digestion (TPAD) System Treating Dairy Cattle Wastes.” Water Research 37 (7): 1628–1636.CrossrefGoogle Scholar

  • Vande Wouwer, Philippe Saucez Alain, and Carlos Vilas. 2014. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB. Cham: Springer International Publishing. http://link.springer.com/10.1007/978-3-319-06790-2.

  • Volcke, Eveline IP, Stijn Van Hulle, Tolessa Deksissa, Usama Zaher, and P. A. Vanrolleghem. 2005. “Calculation of PH and Concentration of Equilibrium Components during Dynamic Simulation by Means of a Charge Balance.” BIOMATH Tech. Report. Ghent University, Ghent, Belgium. https://www.researchgate.net/profile/Peter_Vanrolleghem/publication/228525437_Calculation_of_pH_and_concentration_of_equilibrium_components_during_dynamic_simulation_by_means_of_a_charge_balance/links/5447b5640cf2d62c3050a4d9.pdf.

  • Weiland, Peter. 2010. “Biogas Production: Current State and Perspectives.” Applied Microbiology and Biotechnology 85 (4): 849–860. .CrossrefGoogle Scholar

  • Whitman, William B., Timothy L Bowen, and David R Boone. 2006. “The Methanogenic Bacteria.” In The Prokaryotes, edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt, 165–207. New York, NY: Springer New York. http://link.springer.com/10.1007/0-387-30743-5_9.

  • Wu, Li-Jie, Yu Qin, Toshimasa Hojo, and Yu-You Li. 2015. “Upgrading of Anaerobic Digestion of Waste Activated Sludge by Temperature-Phased Process with Recycle.” Energy 87 (July): 381–389. .CrossrefGoogle Scholar

  • Xie, K., H. J. Lin, B. Mahendran, D. M. Bagley, K. T. Leung, S. N. Liss, and B. Q. Liao. 2010. “Performance and Fouling Characteristics of a Submerged Anaerobic Membrane Bioreactor for Kraft Evaporator Condensate Treatment.” Environmental Technology 31 (5): 511–521. .CrossrefGoogle Scholar

  • Zevaco, Claude, and M.J. Desmazeaud. 1980. “Hydrolysis of β-Casein and Peptides by Intracellular Neutral Protease of Streptococcus Diacetylactis.” Journal of Dairy Science 63 (1): 15–24. .CrossrefGoogle Scholar

  • Zhang, Bo, He Pin-Jing, Fan Lü, Li-ming Shao, and Pei Wang. 2007. “Extracellular Enzyme Activities during Regulated Hydrolysis of High-Solid Organic Wastes.” Water Research 41 (19): 4468–4478. .CrossrefGoogle Scholar

  • Zhang, Dongdong, Wanbin Zhu, Can Tang, Yali Suo, Lijuan Gao, Xufeng Yuan, Xiaofen Wang, and Zongjun Cui. 2012. “Bioreactor Performance and Methanogenic Population Dynamics in a Low-Temperature (5–18 °C) Anaerobic Fixed-Bed Reactor.” Bioresource Technology 104 (January): 136–143. .CrossrefGoogle Scholar

About the article

Received: 2017-07-13

Accepted: 2018-06-05

Revised: 2018-03-17

Published Online: 2018-06-14


Citation Information: International Journal of Chemical Reactor Engineering, 20170139, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0139.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in