Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …

Modelling of Chemical Reactors: From Systemic Approach to Compartmental Modelling

Jérémie Haag / Caroline Gentric
  • GEPEA, UMR 6144, Université de Nantes, 37 bd de l’Université, 44602 Saint-Nazaire Cedex, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cécile Lemaitre / Jean-Pierre Leclerc
Published Online: 2018-04-19 | DOI: https://doi.org/10.1515/ijcre-2017-0172


To take into account the impact of hydrodynamics on their behavior, chemical reactors are traditionally modeled as an association of smaller ideal reactors: perfectly stirred or plug flow reactors. This modeling is mainly based on the reactor hydrodynamics but sometimes also on phenomena governing the considered process such as heat or mass transfer or chemical reaction. The approaches encountered in the literature start from the most basic one in which the whole reactor is considered as an ideal reactor, up to a very fine discretization using Computational Fluid Dynamics (CFD). In between, the reactor can be described as an association of a small number of ideal reactors: this is the systemic approach. Another intermediate approach has also been recently developed: the compartmental method, where all compartments are assumed to be perfectly mixed. In the compartment method, the compartment number is significantly more important than in the systemic approach - but lower than for CFD. Furthermore, these compartments are chosen to be relevant regarding their position in space as opposed to systemic models in which, in most of cases, only the global physical behavior is taken into account. Compared to CFD, compartment models are less computationally demanding while taking into account the most important flow features. The present review describes the different types of modeling commonly used in chemical reaction engineering during the last 60 years from the systemic approach to CFD, with a focus on the attractive compartmental modelling. In particular, the methodologies encountered to determine the compartment structure are detailed, as well as the different possibilities to determine the turbulent fluxes between compartments.

Keywords: systemic models; compartment models; division and aggregation methods; turbulent exchanges


  • Abdulrahman, M.W. 2016. “CFD Simulations of Direct Contact Volumetric Heat Transfer Coefficient in a Slurry Bubble Column at a High Gas Temperature of a Helium–Water–Alumina System.” Applications Therm Engineering 99: 224–234. doi: .CrossrefGoogle Scholar

  • Aghbolaghy, M., and A. Karimi. 2014. “Simulation and Optimization of Enzymatic Hydrogen Peroxide Production in a Continuous Stirred Tank Reactor Using CFD–RSM Combined Method.” Journal Taiwan Institute Chemical Engineering 45: 101–107. doi: .CrossrefGoogle Scholar

  • Alvarado, A., S. Vedantam, P. Goethals, and I. Nopens. 2012. “A Compartmental Model to Describe Hydraulics in A Full-Scale Waste Stabilization Pond.” Water Research 46: 521–530.CrossrefGoogle Scholar

  • Ameer, G.A., E.A. Grovender, B. Obradovic, C.L. Cooney, and R. Langer. 1999. “RTD Analysis of a Novel Taylor-Couette Flow Device for Blood Detoxification.” AIChE J 45: 633–638.CrossrefGoogle Scholar

  • Behin, J., and M. Aghajari. 2008. “Influence of Water Level on oil–Water Separation by Residence Time Distribution Curves Investigations.” Sep Purification Technological 64: 48–55.CrossrefGoogle Scholar

  • Behin, J., and S. Bahrami. 2012. “Modeling an Industrial Dissolved Air Flotation Tank Used for Separating Oil from Wastewater.” Chemical Engineering Processing Processing Intensif 59: 1–8.CrossrefGoogle Scholar

  • Benkhelifa, H., J. Legrand, P. Legentilhomme, and A. Montillet. 2000. “Study of the Hydrodynamic Behaviour of the Batch and Continuous Torus Reactor in Laminar and Turbulent Flow Regimes by Means of Tracer Methods.” Chemical Engineering Sciences 55: 1871–1882. doi: .CrossrefGoogle Scholar

  • Bezzo, F., and S. Macchietto. 2004. “A General Methodology for Hybrid multizonal/CFD Models: Part II.” Automatic Zoning Computation Chemical Engineering 28: 513–525.Google Scholar

  • Bhusare, V.H., M.K. Dhiman, D.V. Kalaga, S. Roy, and J.B. Joshi. 2017. “CFD Simulations of a Bubble Column with and without Internals by Using OpenFOAM.” Chemical Engineering Journal 317: 157–174. doi: .CrossrefGoogle Scholar

  • Bischoff, K.B. 1963. “The General Use of Imperfect Pulse Inputs to Find Characteristics of Flow Systems.” Canada Journal Chemical Engineering 41: 129–129. doi: .CrossrefGoogle Scholar

  • Blet, V., P. Berne, F. Tola, X. Vitart, and C. Chaussy. 1999. “Recent Developments in Radioactive Tracers Methodology.” Applications Radiation Isot 51: 615–624. doi: .CrossrefGoogle Scholar

  • Brucato, A., M. Ciofalo, F. Grisafi, and R. Tocco. 2000. “On the Simulation of Stirred Tank Reactors via Computational Fluid Dynamics.” Chemical Engineering Sciences 55: 291–302. doi: .CrossrefGoogle Scholar

  • Busciglio, A., F. Grisafi, F. Scargiali, and A. Brucato. 2014. “Mixing Dynamics in Uncovered Unbaffled Stirred Tanks.” Chemical Engineering Journal 254: 210–219. doi: .CrossrefGoogle Scholar

  • Chen, M.S.K., L.T. Fan, C.L. Hwang, and E.S. Lee. 1969. “Air Flow Models in a Confined Space a Study in Age Distribution.” Build Sciences 4: 133–143. doi: .CrossrefGoogle Scholar

  • Cholette, A., and L. Cloutier. 1959. “Mixing Efficiency Determinations for Continuous Flow Systems.” Canada Journal Chemical Engineering 37: 105–112. doi: .CrossrefGoogle Scholar

  • Claudel, S., C. Fonteix, J.-P. Leclerc, and H.-G. Lintz. 2003. “Application of the Possibility Theory to the Compartment Modelling of Flow Pattern in Industrial Processes.” Chemical Engineering Sciences 58: 4005–4016.CrossrefGoogle Scholar

  • Constant-Machado, H., J.-P. Leclerc, E. Avilan, G. Landaeta, N. Añorga, and O. Capote. 2005. “Flow Modeling of a Battery of Industrial Crude Oil/Gas Separators Using 113 M in Tracer Experiments.” Chemical Engineering Processing Processing Intensif 44: 760–765.CrossrefGoogle Scholar

  • Danckwerts, P.V. 1953. “Continuous Flow Systems: Distribution of Residence Times.” Chemical Engineering Sciences 2: 1–13.CrossrefGoogle Scholar

  • Danckwerts, P.V. 1958. “The Effect of Incomplete Mixing on Homogeneous Reactions.” Chemical Engineering Sciences 8: 93–102. doi: .CrossrefGoogle Scholar

  • Delafosse, A., S. Calvo, M.-L. Collignon, F. Delvigne, M. Crine, and D. Toye. 2015. “Euler–Lagrange Approach to Model Heterogeneities in Stirred Tank Bioreactors – Comparison to Experimental Flow Characterization and Particle Tracking.” Chemical Engineering Sciences 134: 457–466. doi: .CrossrefGoogle Scholar

  • Delafosse, A., M.-L. Collignon, S. Calvo, F. Delvigne, M. Crine, P. Thonart, and D. Toye. 2014. “CFD-based Compartment Model for Description of Mixing in Bioreactors.” Chemical Engineering Sciences 106: 76–85.CrossrefGoogle Scholar

  • Delafosse, A., F. Delvigne, M.-L. Collignon, M. Crine, P. Thonart, and D. Toye. 2010. “Development of a Compartment Model Based on CFD Simulations for Description of Mixing in bioreactors/Développement D’un Modèle Compartimenté Basé Sur La Mécanique Des Fluides Numérique Pour La Description Du Mélange En Bioréacteur.” Biotechnology Agronomic Société Environment 14: 517.Google Scholar

  • Fichet, V., M. Kanniche, P. Plion, and O. Gicquel. 2010. “A Reactor Network Model for Predicting NOx Emissions in Gas Turbines.” Fuel 89: 2202–2210. doi: .CrossrefGoogle Scholar

  • Fletcher, D.F., D.D. McClure, J.M. Kavanagh, and G.W. Barton. 2017. “CFD Simulation of Industrial Bubble Columns: Numerical Challenges and Model Validation Successes.” Applications Mathematical Model 44: 25–42. doi: .CrossrefGoogle Scholar

  • Gaida, L.B., C. Andre, C. Bideaux, S. Alfenore, X. Cameleyre, C. Molina-Jouve, and L. Fillaudeau. 2012. “Modelling of Hydrodynamic Behaviour of a Two-Stage Bioreactor with Cell Recycling Dedicated to Intensive Microbial Production.” Chemical Engineering Journal 183: 222–230.CrossrefGoogle Scholar

  • Gao, Y., F.J. Muzzio, and M.G. Ierapetritou. 2012. “A Review of the Residence Time Distribution (RTD) Applications in Solid Unit Operations.” Powder Technological 228: 416–423.CrossrefGoogle Scholar

  • Gibilaro, L.G. 1978. “On the Residence Time Distribution for Systems with Open Boundaries.” Chemical Engineering Sciences 33: 487–491. doi: .CrossrefGoogle Scholar

  • Gresch, M., R. Brügger, A. Meyer, and W. Gujer. 2009. “Compartmental Models for Continuous Flow Reactors Derived from CFD Simulations.” Environmental Science & Technology 43: 2381–2387.CrossrefGoogle Scholar

  • Guha, D., M.P. Dudukovic, P.A. Ramachandran, S. Mehta, and J. Alvare. 2006. “CFD-based Compartmental Modeling of Single Phase Stirred-Tank Reactors.” AIChE J 52: 1836–1846.CrossrefGoogle Scholar

  • Hocine, S., L. Pibouleau, C. Azzaro-Pantel, and S. Domenech. 2008a. “Modelling Systems Defined by RTD Curves.” Computation Chemical Engineering 32: 3112–3120.CrossrefGoogle Scholar

  • Hocine, S., L. Pibouleau, C. Azzaro-Pantel, and S. Domenech. 2008b. “Modelling Systems Defined by RTD Curves.” Computation Chemical Engineering 32: 3112–3120. doi: .CrossrefGoogle Scholar

  • Hristov, H., R. Mann, V. Lossev, S.D. Vlaev, and P. Seichter. 2001. “A 3-D Analysis of Gas-Liquid Mixing, Mass Transfer and Bioreaction in A Stirred Bio-Reactor.” Food Bioprod Processing 79: 232–241. doi: .CrossrefGoogle Scholar

  • Hristov, H.V., R. Mann, V. Lossev, and S.D. Vlaev. 2004. “A Simplified CFD for Three-Dimensional Analysis of Fluid Mixing, Mass Transfer and Bioreaction in A Fermenter Equipped with Triple Novel Geometry Impellers. Food Bioprod. Process.” Mixing Heat and Massachusetts Transfer 82: 21–34. doi: .CrossrefGoogle Scholar

  • Kagoshima, M., and R. Mann. 2006. “Development of a Networks-Of-Zones Fluid Mixing Model for an Unbaffled Stirred Vessel Used for Precipitation.” Chemical Engineering Sciences, Fluid Mixing VIII International Conference Fluid Mixing VIII International Conference 61: 2852–2863. doi:.CrossrefGoogle Scholar

  • Kulkarni, A.L., and A.W. Patwardhan. 2014. “CFD Modeling of Gas Entrainment in Stirred Tank Systems.” Chemical Engineering Researcher Design 92: 1227–1248. doi: .CrossrefGoogle Scholar

  • Laakkonen, M., P. Moilanen, V. Alopaeus, and J. Aittamaa. 2006. “Dynamic Modeling of Local Reaction Conditions in an Agitated Aerobic Fermenter.” AIChE J 52: 1673–1689. doi: .CrossrefGoogle Scholar

  • Laquerbe, C., J.C. Laborde, P. Floquet, L. Pibouleau, and S. Domenech. 1998. “Identification of Parametric Models Based on RTD Theory: Application to Safety Studies in Ventilated Nuclear Enclosures.” Computation Chemical Engineering 22: S347–S353.Google Scholar

  • Laquerbe, C., J.C. Laborde, S. Soares, P. Floquet, L. Pibouleau, and S. Domenech. 2001. “Synthesis of RTD Models VIA Stochastic Procedures: Simulated Annealing and Genetic Algorithm.” Computation Chemical Engineering 25: 1169–1183.CrossrefGoogle Scholar

  • Launder, B.E., and D.B. Spalding. 1974. "The Numerical Computation of Turbulent Flows." Computer Methods in Applied Mechanics and Engineering 3: 269–289.Google Scholar

  • Laurent, J., P. Bois, M. Nuel, and A. Wanko. 2015. “Systemic Models of Full-Scale Surface Flow Treatment Wetlands: Determination by Application of Fluorescent Tracers.” Chemical Engineering Journal 264: 389–398.CrossrefGoogle Scholar

  • Le Moullec, Y., C. Gentric, O. Potier, and J.P. Leclerc. 2010. “Comparison of Systemic, Compartmental and CFD Modelling Approaches: Application to the Simulation of a Biological Reactor of Wastewater Treatment.” Chemical Engineering Sciences 65: 343–350.CrossrefGoogle Scholar

  • Leclerc, J.-P., R. Mesnier, C.S. Calvo, G. Maghella, and E. Mamani. 2007. “Interpretation of Radiotracer Experiments in an Industrial Battery of Desanders with Simultaneous Stochastic and Non-Stochastic Flows.” Applications Radiation Isot 65: 1208–1214.CrossrefGoogle Scholar

  • Leclerc, J.-P., H. Muhr, C. Findeling, J. Terriere, and Y. Charonnat. 1996. “Modélisation De L’écoulement De L’eau Et Du Filler Dans Un Malaxeur Industriel Et Détermination De Son Pouvoir De Lissage.” Bull.-Lab PONTS CHAUSSEES: 5–16.Google Scholar

  • Leon, M.A., T.A. Nijhuis, J. Van Der Schaaf, and J.C. Schouten. 2014. “Residence Time Distribution and Reaction Rate in the Horizontal Rotating Foam Stirrer Reactor.” Chemical Engineering Sciences 117: 8–17.CrossrefGoogle Scholar

  • Levenspiel, O. 1999. “Chemical Reaction Engineering.” Industrial Engineering Chemical Researcher 38: 4140–4143.CrossrefGoogle Scholar

  • Li, W., and W. Zhong. 2015. “CFD Simulation of Hydrodynamics of Gas–Liquid–Solid Three-Phase Bubble Column.” Powder Technological 286: 766–788. doi: .CrossrefGoogle Scholar

  • Makokha, A.B., M.H. Moys, and M.M. Bwalya. 2011. “Modeling the RTD of an Industrial Overflow Ball Mill as a Function of Load Volume and Slurry Concentration.” Miner Engineering 24: 335–340.CrossrefGoogle Scholar

  • McClure, D.D., J.M. Kavanagh, D.F. Fletcher, and G.W. Barton. 2015. “Oxygen Transfer in Bubble Columns at Industrially Relevant Superficial Velocities: Experimental Work and CFD Modelling.” Chemical Engineering Journal 280: 138–146. doi: .CrossrefGoogle Scholar

  • Meroney, R.N., and P.E. Colorado. 2009. “CFD Simulation of Mechanical Draft Tube Mixing in Anaerobic Digester Tanks.” Water Research 43: 1040–1050.CrossrefGoogle Scholar

  • Montastruc, L., C. Azzaro-Pantel, L. Pibouleau, and S. Domenech. 2004. “A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment.” AIChE J 50: 2514–2525.CrossrefGoogle Scholar

  • Montastruc, L., J.P. Brienne, and I. Nikov. 2009. “Modeling of Residence Time Distribution: Application to a Three-Phase Inverse Fluidized Bed Based on a Mellin Transform.” Chemical Engineering Journal 148: 139–144.CrossrefGoogle Scholar

  • Moreira, R.M., A.M. Pinto, R. Mesnier, and J.-P. Leclerc. 2007. “Influence of Inlet Positions on the Flow Behavior inside a Photoreactor Using Radiotracers and Colored Tracer Investigations.” Applications Radiation Isot 65: 419–427.CrossrefGoogle Scholar

  • Nauha, E.K., and V. Alopaeus. 2013. “Modeling Method for Combining Fluid Dynamics and Algal Growth in a Bubble Column Photobioreactor.” Chemical Engineering Journal 229: 559–568.CrossrefGoogle Scholar

  • Nauman, E.B. 1969. “Residence Time Distribution Theory for Unsteady Stirred Tank Reactors.” Chemical Engineering Sciences 24: 1461–1470. doi: .CrossrefGoogle Scholar

  • Nauman, E.B. 1981. “Residence Time Distributions and Micromixing.” Chemical Engineering Communicable 8: 53–131. doi: .CrossrefGoogle Scholar

  • Nauman, E.B. 2008. “Residence Time Theory.” Industrial Engineering Chemical Researcher 47: 3752–3766. doi: .CrossrefGoogle Scholar

  • Niño-Navarro, C., I. Chairez, L. Torres-Bustillos, J. Ramírez-Muñoz, E. Salgado-Manjarrez, and E.I. Garcia-Peña. 2016. “Effects of Fluid Dynamics on Enhanced Biohydrogen Production in a Pilot Stirred Tank Reactor: CFD Simulation and Experimental Studies.” International Journal Hydrog Energy 41: 14630–14640. doi: .CrossrefGoogle Scholar

  • Olander, L., J.M. Dessagne, F. Bonthoux, and J.P. Leclerc. 1995. “A Study of General Ventilation and Local Exhaust Ventilation in Industrial Premises Using Residence Time Distribution Theory.” Environment Progress 14: 159–163.CrossrefGoogle Scholar

  • Pant, H.J., and V.N. Yelgoankar. 2002. “Radiotracer Investigations in Aniline Production Reactors.” Applications Radiation Isot 57: 319–325.CrossrefGoogle Scholar

  • Paterson, W.R., E.L. Berresford, D.L. Moppett, D.M. Scott, V.K. Simmons, and R.B. Thorpe. 2000. “Gas Flow Maldistribution in Moving Beds of Monosized Particles.” Chemical Engineering Sciences 55: 3515–3527.CrossrefGoogle Scholar

  • Ponsich, A., C. Azzaro-Pantel, S. Domenech, L. Pibouleau, and F. Pigeonneau. 2009. “A Systemic Approach for Glass Manufacturing Process Modeling.” Chemical Engineering Processing Processing Intensif 48: 1310–1320.CrossrefGoogle Scholar

  • Ranade, V.V. 2002. Computational Flow Modeling for Chemical Reactor Engineering. San Diego, CA: Academic Press.Google Scholar

  • Ri, P.-C., N.-Q. Ren, J. Ding, J.-S. Kim, and W.-Q. Guo. 2017. “CFD Optimization of Horizontal Continuous Stirred-Tank (HCSTR) Reactor for Bio-Hydrogen Production.” International Journal Hydrog Energy 42: 9630–9640. doi: .CrossrefGoogle Scholar

  • Rigopoulos, S., and A. Jones. 2003. “A Hybrid CFD—Reaction Engineering Framework for Multiphase Reactor Modelling: Basic Concept and Application to Bubble Column Reactors.” Chemical Engineering Sciences 58: 3077–3089.CrossrefGoogle Scholar

  • Roth, E., B. Fabre, A. Accary, and G. Thomas. 2000. “Modelling of Stimulus Response Experiments in the Feed Channel of Spiral-Wound Reverse Osmosis Membranes.” Desalination 127: 69–77.CrossrefGoogle Scholar

  • Seppälä, M. 2008. Automatic Zoning for Combined CFD and Multiblock Modelling. Helsinki University of Technology, PhD.Google Scholar

  • Sivashanmugam, P., and S. Sundaram. 2000. “Residence Time Distribution Studies in Annular Circulating Fluidised Bed Drier.” Powder Technological 107: 256–258.CrossrefGoogle Scholar

  • Song, T., K. Jiang, J. Zhou, D. Wang, N. Xu, and Y. Feng. 2015. “CFD Modelling of Gas–Liquid Flow in an Industrial Scale Gas-Stirred Leaching Tank. Int. J. Miner. Process.” Mineral Processing in Australia and China 142: 63–72. doi: .CrossrefGoogle Scholar

  • Thỳn, J., R. Zitnỳ, J. Kluson, and T. Cechák. 2002. Analysis and Diagnostics of Industrial Processes by Radiotracers and Radioisotope Sealed Sources. Vydavatelství CVUT.Google Scholar

  • Vafaei-Alamdari, M., R. Bounaceur, J.-P. Leclerc, P. Tochon, and F. Chopard. 2009. “Compartmental Modeling of a Structured Heat Exchanger Reactor: Conversion and Temperature Profiles Predictions.” Journal Chemical Engineering Japanese 42: s111–s118. doi: .CrossrefGoogle Scholar

  • Van Swaaij, W.P.M., J.C. Charpentier, and J. Villermaux. 1969. “Residence Time Distribution in the Liquid Phase of Trickle Flow in Packed Columns.” Chemical Engineering Sciences 24: 1083–1095. doi: .CrossrefGoogle Scholar

  • Villermaux, J., 1993. Génie De La Réaction Chimique-Conception Et Fonctionnement Des Réacteurs. Paris TecDoc 448.Google Scholar

  • Vrábel, P., R.G. Van Der Lans, F.N. Van Der Schot, K.C.A. Luyben, B. Xu, and S.-O. Enfors. 2001. “CMA: Integration of Fluid Dynamics and Microbial Kinetics in Modelling of Large-Scale Fermentations.” Chemical Engineering Journal 84: 463–474.CrossrefGoogle Scholar

  • Wadnerkar, D., M.O. Tade, V.K. Pareek, and R.P. Utikar. 2016. “CFD Simulation of Solid–Liquid Stirred Tanks for Low to Dense Solid Loading Systems.” Particuology 29: 16–33. doi: .CrossrefGoogle Scholar

  • Wang, H., X. Jia, X. Wang, Z. Zhou, J. Wen, and J. Zhang. 2014. “CFD Modeling of Hydrodynamic Characteristics of a Gas–Liquid Two-Phase Stirred Tank.” Applications Mathematical Model 38: 63–92. doi: .CrossrefGoogle Scholar

  • Wells, G.J., and W.H. Ray. 2005. “Methodology for Modeling Detailed Imperfect Mixing Effects in Complex Reactors.” AIChE J 51: 1508–1520.CrossrefGoogle Scholar

  • Yianatos, J., L. Bergh, L. Vinnett, I. Panire, and F. Díaz. 2015. “Modelling of Residence Time Distribution of Liquid and Solid in Mechanical Flotation Cells.” Miner Engineering 78: 69–73.CrossrefGoogle Scholar

  • Zahradnı́k, J., R. Mann, M. Fialová, D. Vlaev, S.D. Vlaev, V. Lossev, and P. Seichter. 2001. “A Networks-Of-Zones Analysis of Mixing and Mass Transfer in Three Industrial Bioreactors.” Chemical Engineering Sciences, 16th International Conference on Chemical Reactor Engineering 56: 485–492. doi:.CrossrefGoogle Scholar

  • Zwietering, T.N. 1959. “The Degree of Mixing in Continuous Flow Systems.” Chemical Engineering Sciences 11: 1–15. doi: .CrossrefGoogle Scholar

About the article

Received: 2017-09-12

Accepted: 2018-03-14

Revised: 2017-11-20

Published Online: 2018-04-19

Citation Information: International Journal of Chemical Reactor Engineering, 20170172, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0172.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in