Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 16, Issue 9

Optimization and Reaction Kinetics Studies on Copper-Cobalt Catalyzed Liquid Phase Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran

Sanjay Srivastava
  • Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. C. Jadeja
  • Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jigisha K. Parikh
  • Corresponding author
  • Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-28 | DOI: https://doi.org/10.1515/ijcre-2017-0197


In the present work, hydrogenation of biomass derived 5-hydroxymethylfurfural (HMF) into fuel additive 2,5-dimethylfuran (DMF) is studied over Cu-Co/Al2O3 catalyst. The influence of various operating parameters such as temperature, pressure, catalyst amount, time and HMF concentration on the conversion HMF to DMF was optimized using well known Taguchi method as statistical tool. According to Taguchi method, under optimum reaction conditions viz. temperature 220 °C, pressure 30 bar, reaction time 6 h, catalyst loading 0.5 g, and HMF concentration of 0.2 wt%, maximum DMF yield (87 %) was recorded. Analysis of variance suggested that temperature and pressure are the most influencing factor. Mechanistic study suggested that DMF can be obtained via C = O hydrogenation over Cu metal due to preferential adsorption of HMF on Cu metal which further undergoes acid catalyzed hydrogenolysis and resulted DMF. The initial rates of reaction HMF to BHMF varied linearly with hydrogen pressure at different temperatures, catalysts loading, and reactant substrate concentration. These observations indicate first order kinetics for HMF disappearance. According to power-law model, the order with respect to HMF was found to be 0.9. The experimental data could also be explained using Langmuir-Hinshelwood kinetics. A competitive hydrogen with dissociative adsorption on catalysts surface and surface reaction as the rate-controlling step provided the best fit of the experimental data.

Keywords: biomass; 5-hydroxymethylfurfural; 2,5-dimethylfuran; Taguchi method; kinetics; mechanism


  • Alonso, D.M., S. G. Wettstein, and J. A. Dumesic. 2012. “Bimetallic Catalysts for Upgrading of Biomass to Fuels and Chemicals.” Chemical Society Reviews 41 (24): 8075–98.Web of ScienceCrossrefGoogle Scholar

  • Bhogeswararao, S., and D. Srinivas. 2015. “Catalytic Conversion of Furfural to Industrial Chemicals over Supported Pt and Pd Catalysts.” Journal of Catalysis 327: 65–77.Web of ScienceCrossrefGoogle Scholar

  • Bienholz, A., H. Hofmann, and P. Claus. 2011. “Selective Hydrogenolysis of Glycerol over Copper Catalysts Both in Liquid and Vapour Phase: Correlation between the Copper Surface Area and the Catalyst's Activity. Applied Catalysis A.” General 391: 153–57.CrossrefGoogle Scholar

  • Binder, J. B., and R. T. Raines. 2009. “Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals.” Journal of American Chemical Society 131 (5): 1979–85.CrossrefWeb of ScienceGoogle Scholar

  • Biradar, N. S., A. M. Hengne, S. N. Birajdar, P. S. Niphadkar, P. N. Joshi, and C. V. Rode. 2014. “Single-Pot Formation of THFAL via Catalytic Hydrogenation of FFR over Pd/MFI Catalyst.” ACS Sustainable Chemistry Engineering 2 (2): 272–81.CrossrefWeb of ScienceGoogle Scholar

  • Chatterjee, M., T. Ishizaka, and H. Kawanami. 2014. “Hydrogenation of 5-Hydroxymethylfurfural in Supercritical Carbon Dioxide–Water: A Tunable Approach to Dimethylfuran Selectivity.” Green Chemistry 16 (3): 1543−1551.CrossrefWeb of ScienceGoogle Scholar

  • Chen, B., F. Li, Z. Huang, and G. Yuan. 2017. “Carbon-Coated Cu-Co Bimetallic Nanoparticles as Selective Andrecyclable Catalysts for Production of Biofuel 2,5-Dimethylfuran.” Applied Catalysis B: Environmental 200: 192–99.CrossrefGoogle Scholar

  • Chen, D., H. P. Rebo, K. Moljord, and A. Holmen. 1999. “Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reactions.” Industrial Engineering Chemistry Research 38: 4241–49.CrossrefGoogle Scholar

  • Corma, S., S. Iborra, and A. Velty. 2007. “Chemical Routes for the Transformation of Biomass into Chemicals.” Chemical Review 107 (6): 2411–502.CrossrefGoogle Scholar

  • Couwenberg, P. M., Q. Chen, and G. B. Marin. 1996. “Irreducible Mass-Transport Limitations during a Heterogeneously Catalyzed Gas-Phase Chain Reaction: Oxidative Coupling of Methane.” Industrial Engineering Chemistry Research 35: 415–21.CrossrefGoogle Scholar

  • Datta, S., S. De, B. Saha, and I. Alam. 2012. “Advances in Conversion of Hemicellulosic Biomass to Furfural and Upgrading to Biofuels.” Catalyst Science & Technology 2 (10): 2025–36.CrossrefGoogle Scholar

  • Doraiswamy, L. K., and M. M. Sharma. 1984. Heterogeneous Reactions: Analysis, Examples, and Reactor Desigg. Volume 2:: Fluid-Fluid-Solid Reactions. New Jersey, United States: John Wiley and Sons, 1, 1984.Google Scholar

  • Fogg, P. G. T., and W. Gerrard. 1990. Solubility of Gases in Liquids. Chichester: Wiley, 1990.Google Scholar

  • Gawade, A. B., M. S. Tiwari, and G. D. Yadav. 2016. “Biobased Green Process: Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethyl Furan under Mild Conditions Using Pd-Cs2.5H0.5PW12O40/K-10 Clay.” ACS Sustainable Chemistry 4 (8): 4113–23.Web of ScienceCrossrefGoogle Scholar

  • Hansen, T. S., K. Barta, P. T. Anastas, P. C. Ford, and A. Riisager. 2012. “One-Pot Reduction of 5-Hydroxymethylfurfural Viahydrogen Transfer from Supercritical Methanol.” Green Chemistry 14 (9): 2457–61.CrossrefGoogle Scholar

  • Jain, A. B., and P. D. Vaidya. 2016. “Kinetics of Catalytic Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Bis-Hydroxymethylfuran in Aqueous Solution over Ru/C.” Journal of Chemical Kinetics 48 (6): 318–28.Web of ScienceCrossrefGoogle Scholar

  • Kroes, G. J. 1999. “Six-Dimensional Quantum Dynamics of Dissociative Chemisorption of H2 on Metal Surfaces.” Progress in Surface Science 60 (1-4): 1–85.CrossrefGoogle Scholar

  • Kumalaputri, A. J., G. Bottari, G. J. Erne, H. J. Heeres, and K. Barta. 2014. “Tunable and Selective Conversion of 5-HMF to 2,5-Furandimethanol and 2,5-Dimethylfuran over Copper-Doped Porous Metal Oxides.” ChemSusChem 7 (8): 2266–75.CrossrefWeb of ScienceGoogle Scholar

  • Luijkx, G. C. A., N. P. M. Huck, F. V. Rantwijk, L. Maat, and H. V. Bekkum. 2009. “Ether Formation in the Hydrogenolysis of Hydroxymethylfurfural over Palladium Catalysts in Alcoholic Solution.” Heterocycles 77 (2): 1037–44.CrossrefWeb of ScienceGoogle Scholar

  • Luo, J., J. D. Lee, H. Yun, C. Wang, M. Monai, B. M. Christopher, P. Fornasiero, and R. J. Gorte. 2016. “Base Metal-Pt Alloys: A General Route to High Selectivity and Stability in the Production of Biofuels from HMF.” Applied Catalysis B: Environmental 199: 439–46.Web of ScienceCrossrefGoogle Scholar

  • Luo, J., M. Monai, C. Wang, J. D. Lee, T. Duchoň, F. Dvořák, V. Matolín, et al. 2017. “Unraveling the Surface State and Composition of Highly Selective Nanocrystalline Ni–Cu Alloy Catalysts for Hydrodeoxygenation of HMF.” Catalysis Science & Technology 7: 1735–43.Web of ScienceCrossrefGoogle Scholar

  • Melero, J. A., J. Iglesias, and A. Garcia. 2012. “Biomass as Renewable Feedstock in Standard Refinery Units.” Feasibility, Opportunities and Challenges. Energy & Environmental Science 5 (6): 7393–420.Google Scholar

  • Pintar, A., G. Bercic, and J. Levec. 1998. American Journal of Chemical Engineering 44: 2280–92.Google Scholar

  • Rauchfuss, T. B., and T. Thananatthanachon. 2010. “Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose Using Formic Acid as a Reagent.” Angewandte Chemie 49 (37): 6616–18.Web of ScienceCrossrefGoogle Scholar

  • Roman-Leshkov, Y., C. J. Barrett, Z. Y. Liu, and J. A. Dumesic. 2007. “Production of Dimethylfuran for Liquid Fuels from Biomass-Derived Carbohydrates.” Nature 447: 982–85.CrossrefWeb of ScienceGoogle Scholar

  • Ross, P. J. 1996. Taguchi Techniques for Quality Engineering, 2nd ed. New York: McGraw–Hill, 1996.Google Scholar

  • Seemala, B., C. M. Cai, C. E. Wyman, and P. Christopher. 2017. “Support Induced Control of Surface Composition in Cu-Ni/TiO2 Catalysts Enables High Yield Co-Conversion of HMF and Furfural to Methylated Furans.” ACS Catalysis 7 (6): 4070–82.Web of ScienceCrossrefGoogle Scholar

  • Sharma, R. V., U. Das, R. Sammynaiken, and A. K. Dalai. 2013. “Liquid Phase Chemo-Selective Catalytic Hydrogenation of Furfural to Furfuryl Alcohol.” Applied Cataysis A. General 454: 127–36.CrossrefGoogle Scholar

  • Sithisa, S., W. An, and D. E. Resasco. 2011. “Selective Conversion of Furfural to Methylfuran over Silica-Supported Ni-Fe Bimetallic Catalysts.” Journal of Catalysis 284: 90–101.Web of ScienceCrossrefGoogle Scholar

  • Srivastava, S., G. C. Jadeja, and J. K. Parikh. 2016. “A Versatile Bi-Metallic Copper–Cobalt Catalyst for Liquid Phase Hydrogenation of Furfural to 2-Methylfuran.” RSC Advances 6 (2): 1649–59.CrossrefWeb of ScienceGoogle Scholar

  • Srivastava, S., G. C. Jadeja, and J. K. Parikh. 2017a. “Influence of Supports for Selective Production of 2,5‐Dimethylfuran via Bimetallic Copper‐Cobalt Catalyzed 5‐Hydroxymethylfurfural Hydrogenolysis.” Chinease Journal of Catalysis 38: 699–709.CrossrefGoogle Scholar

  • Srivastava, S., G. C. Jadeja, and J. K. Parikh. 2017b. “Synergism Studies on Alumina-Supported Copper-Nickel Catalysts Towards Furfural and 5-Hydroxymethylfurfural Hydrogenation.” Journal of Molecular Catalysis A: Chemical 426: 244–56.Web of ScienceCrossrefGoogle Scholar

  • Srivastava, S., P. Mohanty, J. K. Parikh, A. K. Dalai, S. S. Amritphale, and A. K. Khare. 2015. “Cr-Free Co–Cu/SBA-15 Catalysts for Hydrogenation of Biomass-Derived α-, β-unsaturated Aldehyde to Alcohol.” Chinease Journal of Catalysis 36: 933–42.CrossrefGoogle Scholar

  • Taguchi, G., G. S. Chowdhury, and Y. Wu. 2005. Taguchi's Quality Engineering Handbook. New Jersey: Wiley, (2005).Google Scholar

  • Vannice, M. A. 2005. Kinetics of Catalytic Reactions. New York: Springer, 2005.Google Scholar

  • Wang, G. H., J. Hilgert, F. H. Richter, F. Wang, H. J. Bongard, B. Spliethoff, C. Weidenthaler, and F. Schuth. 2014. “Platinum-Cobalt Bimetallic Nanoparticles in Hollow Carbon Nanospheres for Hydrogenolysis of 5-Hydroxymethylfurfural.” Natural Material 13 (3): 293–300.CrossrefGoogle Scholar

  • Weisz, P. B., and C. D. Prater. 1994. Advances in Catalysis. USA: Academic Press, 143–96.Google Scholar

  • Xiao, J., and J. Wei. 1992. “Diffusion Mechanism of Hydrocarbons in Zeolites II. Analysis of Experimental Observations.” Chemical Engineering Science 47: 1143–59.CrossrefGoogle Scholar

  • Yan, K., and A. Chen. 2014. “Selective Hydrogenation of Furfural and Levulinic Acid to Biofuels on the Ecofriendly Cu–Fe Catalyst.” Fuel 115: 101–08.CrossrefWeb of ScienceGoogle Scholar

  • Yang, P., Q. Cui, Y. Zu, X. Liu, G. Lu, and Y. Wang. 2015. Catalysis Communication 66: 55–59.CrossrefGoogle Scholar

  • Yang, Z., Y. B. Huang, Q. X. Guo, and Y. Fu. 2013. “RANEY® Ni Catalyzed Transfer Hydrogenation of Levulinate Esters to γ-valerolactone at Room Temperature.” Chemical Communicatons 49 (46): 5328–30.CrossrefGoogle Scholar

  • Yildiz, Y. S. 2008. “Optimization of Bomaplex Red CR-L Dye Removal from Aqueous Solution by Electrocoagulation Using Aluminum Electrodes.” Journal of Hazard Material 153: 194–200.CrossrefGoogle Scholar

  • Zhu, Y., X. Kong, H. Zheng, G. Ding, Y. Zhu, and Y. W. Li. 2015. “Efficient Synthesis of 2,5-Dihydroxymethylfuran and 2,5-Dimethylfuran from 5-Hydroxymethylfurfural Using Mineral-Derived Cu Catalysts as Versatile Catalysts.” Catalysis Science & Technology 5: 4208–17.Web of ScienceCrossrefGoogle Scholar

  • Zu, Y., P. Yang, J. Wang, X. Liu, J. Ren, G. Lu, and Y. Wang. 2014. “Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from 5-Hydroxymethylfurfural over Ru/Co3O4 Catalyst.” Applied Catalysis B: Environmental 146: 244–48.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-10-19

Accepted: 2018-08-14

Revised: 2018-05-20

Published Online: 2018-08-28

Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 9, 20170197, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0197.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in