Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Ahead of print


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Adsorption of CO2 onto Activated Carbons Prepared by Chemical Activation with Metallic Salts

Sergio Acevedo
  • Department of Chemistry, School of Science, National University of Colombia, Cra 30 No 45-03, Bogotá D.C, Colombia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liliana Giraldo
  • Department of Chemistry, School of Science, National University of Colombia, Cra 30 No 45-03, Bogotá D.C, Colombia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan C. Moreno-Piraján
  • Corresponding author
  • Department of Chemistry, School of Sciences, University of the Andes, Cra. 1ª No. 18A-10, Bogotá D.C., Colombia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-05 | DOI: https://doi.org/10.1515/ijcre-2017-0198


This article has been retracted due to honest error by the author. For further information, please see https://doi.org/10.1515/ijcre-2017-9198.

Activated carbons are obtained by chemical activation of African Palm shells (Elaeis guineensis) with different impregnating agents, i. e. magnesium chloride (MgCl2) and calcium chloride (CaCl2) aqueous solutions at different concentrations (3, 5 and 7 % w/v) and temperatures (between 773 and 1073 K), in order to assess their influence on the development of the porosity. The activated carbons prepared are characterized in terms of both textural and chemical properties. The activated carbons have a surface area and a pore volume ranging between 19–501 m2.g−1 and 0.03–0.29 cm3.g−1, respectively. Based on the obtained results, the samples with higher surface area and pore volume (i. e. those impregnated with MgCl2 and CaCl2 solutions and thermally treated at 1073 K) are selected to evaluate the adsorption capacity and affinity for CO2.

CO2 adsorption capacity varies between 1.78 and 2.95 mmolCO2.g−1 at 273 K and low pressure, and the activated carbon impregnated with the solution of MgCl2 3 % and activated at 1073 K (i. e. ACMg3-1073) showed the best performances. Finally, the kinetic results show that adsorption rate for sample ACMg3-1073 is enhanced by its micro-mesoporous nature, being the access routes to the micropores larger.

Keywords: MgCl2 activation; CaCl2 activation; CO2 adsorption; activated carbon; African Palm shells


  • Acevedo, S., L. Giraldo, and J. C. Moreno. 2015. “Caracterización textural y química de carbones activados preparados a partir de cuesco de palma africana (Elaeis guineensis) por activación química con CaCl2 y MgCl2.” Revista Colombiana de Química 44: 18–24.Google Scholar

  • Balsamo, M., A. Silvestre-Albero, J. Silvestre-Albero, A. Erto, F. Rodriguez-Reinoso, and A. Lancia. 2014. “Assessment of CO2 Adsorption Capacity on Activated Carbons by a Combination of Batch and Dynamic Tests.” Langmuir 30: 5840–48.Google Scholar

  • Bandosz, J. T. 2006. “Surface Chemistry of Activated Carbons and Its Characterization.” In Activated Carbon Surface in Environmental Remediation, 159–85. Elsevier Science Ltd. ISBN-13: 978-0-12-370536-5.Google Scholar

  • Boehm, H. P. 1994. “Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons.” Carbon 32: 759–69.Google Scholar

  • Brunauer, S., P.H. Emmett, and E. Teller. 1938. “Adsorption of Gases in Multimolecular Layers.” Journal of the American Chemical Society 60: 309–19.Google Scholar

  • Condo, J. B. 2006. “Measuring the Physisorption Isotherm.” In Surface Area and Porosity edited by Roane State Community College Harriman, TN, USA. Determination by Physisorption. 29–44. Elsevier.Google Scholar

  • Dandekar, A., R. T. K. Baker, and M. A. Vannice. 1998. “Characterization of Activated Carbon, Graphitized Carbon Fibers and Synthetic Diamond Powder Using TPD and DRIFTS.” Carbon 36: 1821–31.Google Scholar

  • Drage, T.C., O. Kozynchenko, C. Pevida, M. G. Plaza, F. Rubiera, J. J. Pis, C. E. Snape, and S. Tennison. 2009. “Developing Activated Carbon Adsorbents for Pre-Combustion CO2 Capture.” Energy Procedia 1: 599–605.Google Scholar

  • Erto, A., A. Silvestre-Albero, J. Silvestre-Albero, F. Rodriguez-Reinoso, M. Balsamo, A. Lancia, and F. Montagnaro. 2015. “Carbon-Supported Ionic Liquids as Innovative Adsorbents for CO2 Separation from Synthetic Flue-Gas.” Journal of Colloids and Interface Science 448: 41–50.Google Scholar

  • Figueiredo, J., and M. Pereira. 2010. “The Role of Surface Chemistry in Catalysis with Carbons.” Catalysis Today 150: 2–10.Google Scholar

  • Hameed, B. H., I. A. W. Tan, and A. L. Ahmad. 2008. “Adsorption Isotherm, Kinetic Modeling and Mechanism of 2,4,6-Trichlorophenol on Coconut Husk-Based Activated Carbon.” Chemical Engineering Journal 144: 235–44.Google Scholar

  • Ioannidou, O., and A. Zabaniotou. 2007. “Agricultural Residues as Precursors for Activated Carbon Production – A Review.” Renew. Renewable and Sustainable Energy Reviews 11: 1966–2005.Google Scholar

  • Jagtoyen, M., B. McEnaney, and J. Stencel. 1993. “Activated Carbons from Bituminous Coals by Reaction with H3P04: Influence of Coal Cleaning.” Fuel Processing Technology 34: 85–96.Google Scholar

  • Juárez-Galán, J. M., A. Silvestre-Albero, J. Silvestre-Albero, and F. Rodríguez-Reinoso. 2009. “Synthesis of Activated Carbon with Highly Developed “Mesoporosity”.” Microporous and Mesoporous Materials 117: 519–21.Google Scholar

  • Kavitha, D., and C. Namasivayam. 2007. “Experimental and Kinetic Studies on Methylene Blue Adsorption by Coir Pith Carbon.” Bioresource Technology 98: 14–21.Google Scholar

  • Kohl, S., A. Drochner, and H. Vogel. 2010. “Quantification of Oxygen Surface Groups on Carbon Materials via Diffuse Reflectance FT-IR Spectroscopy and Temperature Programmed Desorption.” Catalysis Today 150: 67–70.Google Scholar

  • López-Ramón, M. V., F. Stoeckli, C. Moreno-Castilla, and F. Carrasco-Marin. 1999. “On the Characterization of Acidic and Basic Surface Sites on Carbons by Various Techniques.” Carbon 37: 1215–21.Google Scholar

  • Marsh, H., and F. Rodriguez-Reinoso. 2005. “Characterization of Activated Carbon.” In Activated Carbon. Elsevier Science, 157–64. ISBN: 0080444636.Google Scholar

  • Martin-Martínez, J. M., R. Torregosa-Macia, and M. C. Mittelmeijer-Hazeleger. 1995. “Mechanisms of Adsorption of CO2 in the Micropores of Activated Anthracite.” Fuel 74: 111–14.Google Scholar

  • Mastrandrea, M. D., C. B. Field, T. F. Stocker, O. K. L. Edenhofer, D. J. Frame, H. Held, E. Kriegler, et al., 2010. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC). Jasper Ridge, CA, USA 6-7 July. http://www.ipcc.ch.

  • Mohamed, F. Sh., W.A. Khater, and M. R. Mostafa. 2006. “Characterization and Phenol Sorptive Properties of Carbons Activated by Sulfuric Acid.” Chemical Engineering Journal 116: 47–52.Google Scholar

  • Molina-Sabio, M., and F. Rodríguez-Reinoso. 2004. “Role of Chemical Activation in the Development of Carbon Porosity.” Colloid and Surface A 241: 15–25.Google Scholar

  • Molina-Sabio, M., F. Rodriguez-Reinoso, F. Caturla, and M. J. Sellys. 1996. “Development of Porosity in Combined Phosphoric Acid- Carbon Dioxide Activation.” Carbon 34: 457–62.Google Scholar

  • Montagnaro, F., A. Silvestre-Albero, J. Silvestre-Albero, F. Rodriguez-Reinoso, A. Erto, A. Lancia, and M. Balsamo. 2015. “Post-Combustion CO2 Adsorption on Activated Carbons with Different Textural Properties.” Microporous and Mesoporous Materials 209: 157–64.Google Scholar

  • Rodríguez-Reinoso, F., C. Almansa, and M. Molina-Sabio. 2004. Patente: 2, 165, 784.

  • Rouquerol, J., F. Rouquerol, and K. S. W. Sing. 1999. “Assessment of Mesoporosity.” In Adsorption by Powders and Porous Solids. Principles, Methodology and Applications, 204–09. Elsevier Science. ISBN: 978-0-12-598920-6.Google Scholar

  • Serna-Guerrero, R., and A Sayari. 2010. “Modeling Adsorption of CO2 on Amine-Functionalized Mesoporous Silica. 2: Kinetics and Breakthrough Curves.” Chemical Engineering Journal 161: 182–90.Google Scholar

  • Vargas, D. 2014. Preparación, Caracterización Y Funcionalización De Materiales Carbonosos Para La Adsorción De CO2. Tesis de Grado. Bogotá, Colombia: Universidad Nacional de Colombia.Google Scholar

  • Vargas, D. P., L. Giraldo, Y. Ladino, and J. C. Moreno. 2009. “Síntesis y caracterización de monolitos de carbón activado utilizando como precursor cáscara de coco.” Afinidad 66: 38–43.Google Scholar

  • Wahby, A., J. M. Ramos-Fernández, M. Martínez-Escandell, A. Sepúlveda-Escribano, J. Silvestre-Albero, and F. Rodríguez-Reinoso. 2010. “High-Surface-Area Carbon Molecular Sieves for Selective CO2 Adsorption.” ChemSusChem 3: 974–81.Google Scholar

  • Wang, Z., Z. Fu, B. Zhang, G. Wang, V. Rudolph, and L. Huo. 2009. “Adsorption and Desorption on Coals for CO2 Sequestration.” Ministry Science and Technology 19: 8–13.Google Scholar

  • Weber, W. J., and J. C. Morris, 1962. “Advances in Water Pollution Research: Removal of Biologically Resistant Pollutant from Waste Water by Adsorption,” in Proceedings of the International Conference on Water Pollution Symposium, vol. 2, pp. 231–66, Pergamon Press, Oxford, UK.Google Scholar

  • Wu-Jun, L., J. Hong, T. Ke, D. Yanwei, and Y. Han-Q. 2013. “Mesoporous Carbon Stabilized MgO Nanoparticles Synthesized by Pyrolysis of MgCl2 Preloaded Waste Biomass for Highly Efficient CO2 Capture.” Environmental Science and Technology 1: 1–27.Google Scholar

  • Yu, C. H., C. H. Huang, and C. S. Tan. 2012. “A Review of CO2 Capture by Absorption and Adsorption.” Aerosol and Air Quality Research 12: 745–69.Google Scholar

  • Zahangir, Md. A., A. M. Suleyman, and K. Noraini, 2008. Production of Activated Carbon from Oil Palm Empty Fruit Bunches for Removal of Zinc. Twelfth International Water Technology Conference, IWTC12, Alexandria, Egypt, pp. 373–83.Google Scholar

  • Zuo, S., J. Yang, J. Liu, and X. Cai. 2009. “Significance of the Carbonization of Volatile Pyrolytic Products on the Properties of Activated Carbons from Phosphoric Acid Activation of Lignocellulosic Material.” Fuel Processing Technology 90: 994–1001.Google Scholar

About the article

Received: 2017-10-21

Accepted: 2018-09-16

Revised: 2018-05-23

Published Online: 2018-10-05

Citation Information: International Journal of Chemical Reactor Engineering, 20170198, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0198.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in