Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 9

Role of Fe(III) and Oxalic Acid in the photo-Fenton System for 3-Methylphenol Degradation in Aqueous Solution under Natural and Artificial Light

N. Seraghni
  • Corresponding author
  • Laboratoire des Sciences et Technologie de l'environnement (LSTE), département de Chimie, Faculté des Sciences Exactes, Université de frères Mentouri-Constantine, Constantine, Algeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B.A Dekkiche
  • Laboratoire des Sciences et Technologie de l'environnement (LSTE), département de Chimie, Faculté des Sciences Exactes, Université de frères Mentouri-Constantine, Constantine, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Belattar
  • Laboratoire des Sciences et Technologie de l'environnement (LSTE), département de Chimie, Faculté des Sciences Exactes, Université de frères Mentouri-Constantine, Constantine, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N. Debbache
  • Laboratoire des Sciences et Technologie de l'environnement (LSTE), département de Chimie, Faculté des Sciences Exactes, Université de frères Mentouri-Constantine, Constantine, Algeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Sehili
  • Laboratoire des Sciences et Technologie de l'environnement (LSTE), département de Chimie, Faculté des Sciences Exactes, Université de frères Mentouri-Constantine, Constantine, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-09 | DOI: https://doi.org/10.1515/ijcre-2017-0211

Abstract

The Fenton process has been widely studied in the treatment of wastewater but unfortunately this process can only work under acidic pH conditions. To overcome these disadvantages, the Fenton modified by adding chelating agents such as oxalic acid (Ferrioxalate complex (Fe(III)Ox) since its high solubility in aqueous media can broaden the available pH range of the Fenton reaction to near neutral pH. In this study, The photooxidation efficiencies of 3-methylphenol (3MP) catalyzed by Fe(III) and oxalic acid was investigated. The results show that the photodegradation Of 3MP is slow in the presence of Fe(III) or oxalic acid alone. However, it is markedly enhanced when Fe(III)Ox complex coexist. The concentration of the complex is optimized to the ratio ([Fe(III)Ox] = 3/12). Fe(III)Ox plays a positive role in the photo-Fenton system, especially at higher

pH = 5.5. Oxygen is essential to the formation of oxidative species and, as a consequence, for the pollutant degradation. Additionally, the use of tertio-butanol as a scavenger confirmed the intervention of .OH in the 3MP photodegradation. 3MP degradation mechanisms have been elucidated and photoproducts are identified by comparison with authentic products. To get closer to the environmental conditions, the effect of main elements present naturally in the aquatic ecosystem such as humic substances and bicarbonates was examined. The photodegradation of 3MP through Fe(III)Ox system under solar light was significantly accelerated in comparison with artificial irradiation at 365 nm. Measuring chemical oxygen demand (COD) leads to mineralization which decreases the toxicity of 3MP solution. This work also demonstrates that this system is an encouraging method for the treatment of organic pollutants in the natural environment.

Keywords: 3-methylphenol; photooxidation; Fe(III)Ox complex; hydroxyl radical; irradiation

References

  • Akpan, U. G., and B. H. Hameed. 2009. “Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO 2-Based Photocatalysts: A Review.” Journal of Hazardous Materials 170 (2): 520–29.CrossrefGoogle Scholar

  • Bielski, B. H. J., D. E. Cabelli, R. L. Arudi, and A. B. Ross. 1985. “Reactivity of HO2/O−2 Radicals in Aqueous Solution.” Journal of Physical and Chemical Reference Data 14, no. 4 (October): 1041–100.CrossrefGoogle Scholar

  • Chen, Y., F. Wu, Y. Lin, N. Deng, N. Bazhin, and E. Glebov. 2007. “Photodegradation of Glyphosate in the Ferrioxalate System.” Journal of Hazardous Materials 148 (1): 360–65.Web of ScienceCrossrefGoogle Scholar

  • Daneshvar, N., D. Salari, and A. R. Khataee. 2003. “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water: Investigation of the Effect of Operational Parameters.” Journal of Photochemistry and Photobiology A: Chemistry 157 (1): 111–16.CrossrefGoogle Scholar

  • Faust, B. C., and J. Hoigné. 1990. “Photolysis of Fe (III)-Hydroxy Complexes as Sources of OH Radicals in Clouds, Fog and Rain.” Atmospheric Environment. Part A. General Topics 24 (1): 79–89.CrossrefGoogle Scholar

  • Feng, W., and D. Nansheng. 2000. “Photochemistry of Hydrolytic Iron (III) Species and Photoinduced Degradation of Organic Compounds. A Minireview.” Chemosphere 41 (8): 1137–47.CrossrefGoogle Scholar

  • Guo, J., Y. Du, Y. Lan, and J. Mao. 2011. “Photodegradation Mechanism and Kinetics of Methyl Orange Catalyzed by Fe(III) and Citric Acid.” Journal of Hazardous Materials 186, no. 2–3 (février): 2083–88.CrossrefWeb of ScienceGoogle Scholar

  • Guo, J., J. Zhang, C. Chen, and Y. Lan. 2016. “Rapid Photodegradation of Methyl Orange by Oxalic Acid Assisted with Cathode Material of lithium Ion Batteries LiFePO 4.” Journal of the Taiwan Institute of Chemical Engineers 62: 187–91.CrossrefGoogle Scholar

  • Gupta, V. K., R. Jain, A. Mittal, M. Mathur, and S. Sikarwar. 2007. “Photochemical Degradation of the Hazardous Dye Safranin-T using TiO 2 Catalyst.” Journal of Colloid and Interface Science 309 (2): 464–69.CrossrefGoogle Scholar

  • Liu, C., F. Li, X. Li, G. Zhang, and Y. Kuang. 2006. “The Effect of Iron Oxides and Oxalate on the Photodegradation of 2-Mercaptobenzothiazole.” Journal of Molecular Catalysis A: Chemical 252 (1): 40–48.CrossrefGoogle Scholar

  • Manenti, D. R., et al. 2015. “Insights into Solar Photo-FENTON Process using Iron (III)–Organic Ligand Complexes Applied to Real Textile Wastewater Treatment.” Chemical Engineering Journal 266: 203–12.Web of ScienceCrossrefGoogle Scholar

  • Nansheng, D., W. Feng, L. Fan, and X. Mei. 1998. “Ferric citrate-Induced Photodegradation of Dyes in Aqueous Solutions.” Chemosphere 36 (15): 3101–12.CrossrefGoogle Scholar

  • Parra, S., V. Sarria, S. Malato, P. Péringer, and C. Pulgarin. 2000. “Photochemical Versus Coupled Photochemical–Biological Flow System for the Treatment of Two Biorecalcitrant Herbicides: Metobromuron and Isoproturon.” Applied Catalysis B: Environmental 27 (3): 153–68.CrossrefGoogle Scholar

  • Rodríguez, E., M. Mimbrero, F. J. Masa, and F. J. Beltrán. 2007. “Homogeneous Iron-Catalyzed Photochemical Degradation of Muconic Acid in Water.” Water Research 41, no. 6 (March): 1325–33.Google Scholar

  • Safarzadeh-Amiri, A., J. R. Bolton, and S. R. Cater. 1996. “Ferrioxalate-Mediated Solar Degradation of Organic Contaminants in Water.” Solar Energy 56 (5): 439–43.CrossrefGoogle Scholar

  • Seraghni, N., I. Ghoul, I. Lemmize, A. Reguig, N. Debbache, and T. Sehili. 2017. “Use of Oxalic Acid as Inducer in Photocatalytic Oxidation of Cresol Red in Aqueous Solution Under Natural and Artificial Light.” Environmental Technology 1–8.Google Scholar

  • Schwarz, H. A., and R. W. Dodson. 1989. “Reduction Potentials of CO2-and the Alcohol Radicals.” The Journal of Physical Chemistry 93 (1): 409–14.CrossrefGoogle Scholar

  • Seraghni, N., S. Belattar, Y. Mameri, N. Debbache, and T. Sehili. 2012. “Fe (III)-Citrate-Complex-Induced Photooxidation of 3-Methylphenol in Aqueous Solution.” International Journal of Photoenergy 2012.Web of ScienceGoogle Scholar

  • Thomas, O., and N. Mazas. 1986. “La mesure de la demande chimique en oxygène dans les milieux faiblement pollués.” Analusis 14 (6): 300–02.Google Scholar

  • Wang, L. 2008. “Photodegradation of Organic Pollutants Induced by Fe (III)-Caoxylate Complexes in Aqueous Solution.” Clermont-Ferrand 2.Google Scholar

  • Wang, Z., C. Chen, W. Ma, and J. Zhao. 2012. “Photochemical Coupling of Iron Redox Reactions and Transformation of Low-Molecular-Weight Organic Matter.” The Journal of Physical Chemistry Letters 3 (15): 2044–51.CrossrefWeb of ScienceGoogle Scholar

  • Wang, Z., D. Xiao, and J. Liu. 2014. “Diverse Redox Chemistry of Photo/Ferrioxalate System.” RSC Advances 4 (84): 44654–58.CrossrefWeb of ScienceGoogle Scholar

  • Xiao, D., Y. Guo, X. Lou, C. Fang, Z. Wang, and J. Liu. 2014. “Distinct Effects of Oxalate Versus Malonate on the Iron Redox Chemistry: Implications for the Photo-Fenton Reaction.” Chemosphere 103: 354–58.CrossrefWeb of ScienceGoogle Scholar

  • Xiao, D., et al. 2015. “Fe-Catalyzed Photoreduction of Cr (VI) with Dicarboxylic Acid (C2–C5): Divergent Reaction Pathways.” Desalination and Water Treatment 56 (4): 1020–28.CrossrefWeb of ScienceGoogle Scholar

  • Zabat, N., and M. Abbessi. 2014. “Complexation of Cobalt with a Heteropolyanion of Dawson Type and Recovery by Emulsified Liquid Membrane.” International Journal of Material Science. 4 (1).Google Scholar

  • Zuo, Y., and J. Hoigné. 1993. “Evidence for Photochemical Formation of H2O2 and Oxidation of SO2 in Authentic Fog Water.” Science 260 (5104): 71–73.CrossrefGoogle Scholar

About the article

Received: 2017-10-22

Accepted: 2018-07-07

Revised: 2018-05-23

Published Online: 2018-08-09


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 9, 20170211, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0211.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in