Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Modelling Laboratory Fischer-Tropsch Synthesis Using Cobalt Catalysts

Luis A. Díaz-Trujillo
  • Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58060 Morelia, Michoacán, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gilberto Toledo-Chávez
  • Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58060 Morelia, Michoacán, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gladys Jiménez-García
  • Departamento de Ingeniería Biomédica, Instituto Tecnológico Superior de Pátzcuaro, Av. Tecnológico # 1, Tzurumútaro, 61615, Pátzcuaro, Michoacán, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Héctor Hernández-Escoto
  • Departamento de Ingeniería Química, Universidad de Guanajuato, Campus Guanajuato 36050, Guanajuato, Guanajuato, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rafael Maya-Yescas
  • Corresponding author
  • Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58060 Morelia, Michoacán, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-25 | DOI: https://doi.org/10.1515/ijcre-2017-0219

Abstract

The main goal of this paper is to critically review current microkinetics available for Fischer-Tropsch synthesis (FTS) modelling, in order to propose the best way to follow this set of complex reactions; therefore a microkinetic model was developed for FTS, accomplishing surface chemistry, heterogeneous kinetics, and single-event previous development for Co-based catalysts. Model starts simulating CO activation on catalyst surface, and then formation of methane, ethane and subsequent chain growth. Reaction rates were derived following the formalism of Langmuir-Hinshelwood-Hougen-Watson (LHHW); surface steps were proposed in consequence of feasibility. Chain growth was modelled by single-event steps, taking into account geometrical conformation explicitly. Number of growth steps of 1-olefins was rectified as requiring one more active site than mechanisms proposed previously; it was found that formation of these olefins exhibits a fast drop in chain growth; this phenomenon is explained in terms of probable geometrical conformations that lead to the number of single events. Experimental results in literature about isothermal synthesis of hydrocarbons in the gasoline range were simulated in a fixed-bed laboratory reactor; thermodynamic consistency was derived from chemical equilibrium over all reactions occurring during FTS. Equilibrium constants were evaluated as function of Gibbs free energy, and partial pressures of reactants and products.

Keywords: Fischer-Tropsch synthesis; isothermal laboratory reactor; micro-kinetics; reactor simulation; single-event kinetics

References

  • Basha, O.M., L. Sehabiague, A. Abdel-Wahab, and B.I. Morsi. 2015. “Fischer–Tropsch Synthesis in Slurry Bubble Column Reactors: Experimental Investigations and Modeling – A Review.” International Journal of Chemical Reaction Engineering 13: 201–288.Google Scholar

  • Davis, H.B., and M.L. Occelli. 2010. Advances in Fischer-Tropsch Synthesis, Catalyst and Catalysis. Vol. 128, 2–16. Boca Raton, FL: CRC Press.Google Scholar

  • Den Breejen, J.P., P.B Radstake, G.L. Bezemer, J.H. Bitter, V. Froseth, A. Holmen, and K.P. De Jong. 2009. “On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis.” Journal of the American Chemical Society 131: 7197–7203.Web of ScienceCrossrefGoogle Scholar

  • Domalski, E.S., and E.D. Hearing. 1988. “Estimation of the Thermodynamics Properties of Hydrocarbons at 298.15 K.” Journal of Physical Chemistry 17: 1637–1678.Google Scholar

  • Dumesic, J.A., D.F. Rudd, L.M. Aparicio, J.E. Rekoske, and A.A. Treviño. 1993. The Microkinetics of Heterogeneous Catalysis. Washington: American Chemical Society.Google Scholar

  • Feng, W., E. Vynckier, and G.F. Froment. 1993. “Single-Event Kinetics of Catalytic Cracking.” Industrial and Engineering Chemistry Research 32: 2997–3005.CrossrefGoogle Scholar

  • Förtsch, D., P. Kyra, and E. Groß-Hardt. 2015. “The Product Distribution in Fischer-Tropsch Synthesis: An Extension of the ASF Model Describe Common Deviations.” Chemical Engineering Science 138: 333–346.CrossrefWeb of ScienceGoogle Scholar

  • Khodakov, A.Y., W. Chu, and P. Fongarland. 2007. “Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels.” Chemistry Reviews 107: 1692–1744.CrossrefGoogle Scholar

  • Klinke, II D.J., and L.J. Broadbelt. 1999. “Construction of a Mechanistic Model for Fischer-Tropsch Synthesis on Ni (100) and Co (1000) Surfaces.” Chemical Engineering Science 54: 3379–3389.CrossrefGoogle Scholar

  • Lee, T.S., and J.N. Chung. 2012. “Mathematical Modeling and Numerical Simulation of a Fischer−Tropsch Packed Bed Reactor and Its Thermal Management for Liquid Hydrocarbon Fuel Production Using Biomass Syngas.” Energy & Fuels 26: 1363−1379.CrossrefWeb of ScienceGoogle Scholar

  • Lozano-Blanco, G., J.W. Thybaut, K. Surla, P. Galtier, and G.B. Marin. 2008. “Single-Event Microkinetic Model for Fischer-Tropsch Synthesis on Iron-Based Catalysts.” Industrial and Engineering Chemistry Research 47: 5879–5891.Web of ScienceCrossrefGoogle Scholar

  • Lu, X., D. Hildebrandt, X. Liu, and D. Glasser. 2012. “A Thermodynamic Approach to Olefin Product Distribution in Fischer−Trosch Synthesis.” Industrial & Engineering Chemistry Research 51: 16544–16551.CrossrefGoogle Scholar

  • Ojeda, M., R. Nabar, A.U. Nilekar, A. Ishikawa, M. Mavrikakis, and E. Iglesia. 2010. “CO Activation Pathways and the Mechanism of Fischer-Tropsch Synthesis.” Journal of Catalysis 272: 287–297.CrossrefWeb of ScienceGoogle Scholar

  • Saeidi, S., M.T. Amiri, N.A.S. Amin, and M.R. Rahimpour. 2014. “Progress in Reactors for High-Temperature Fischer–Tropsch Process: Determination Place of Intensifier Reactor Perspective.” International Journal of Chemical Reaction Engineering 12: 639–664.Google Scholar

  • Sehabiague, L., and B.I. Morsi. 2013. “Modeling and Simulation of a Fischer–Tropsch Slurry Bubble Column Reactor Using Different Kinetic Rate Expressions for Iron and Cobalt Catalysts.” International Journal of Chemical Reaction Engineering 11: 309–330.Google Scholar

  • Shetty, S., and R.A. Van Santen. 2011. “CO Dissociation on Ru and CO Surfaces: The Initial Step in Fischer-Tropsch Synthesis.” Catalysis Today 171: 168–173.CrossrefWeb of ScienceGoogle Scholar

  • Storsaeter, S., D. Chen, and A. Holmen. 2006. “Microkinetic Modelling of the Formation of C1 and C2 Products in the Fischer-Tropsch Synthesis over Cobalt Catalysts.” Surface Science 600: 2051–2063.CrossrefGoogle Scholar

  • Teng, B.T., J. Chang, C.H. Zhang, D.B. Cao, J. Yang, Y. Liu, X.H. Guo, H.W. Xiang, and Y.W. Li. 2006. “A Comprehensive Kinetics Model of Fischer-Tropsch Synthesis on an Industrial Fe-Mn Catalyst.” Applied Catalysis A: General 301: 39–50.CrossrefGoogle Scholar

  • Todic, B., T. Bhatelia, G.F. Froment, W. Ma, G. Jacobs, B.H. Davis, and D.B. Bukur. 2013. “Kinetic Modeling of Fischer-Tropsch Synthesis in a Slurry Reactor on Co-Re/Al2O3 Catalyst.” Industrial and Engineering Chemistry Research 52: 669–679.CrossrefGoogle Scholar

  • Todic, B., W. Ma, G. Jacobs, B.H. Davis, and D.B. Bukur. 2014. “Co-insertion Mechanisms Based Kinetic Model of the Fischer-Tropsch Synthesis Reaction over Re-Promoted Co Catalyst.” Catalysis Today 228: 32–39.CrossrefGoogle Scholar

  • Van der Laan, G.P., and A.A.C.M. Beenackers. 1999. “Kinetics and Selectivity of the Fischer-Tropsch Synthesis: A Literature Review.” Catalysis Reviews: Science and Engineering 41: 255–318.CrossrefGoogle Scholar

  • Van Djik, H.A.J., J.H.B.J. Hoebink, and J.C. Schouten. 2003a. “A Mechanistic Study of the Fischer-Tropsch Synthesis Using Transient Isotopic Tracing. Part-1: Model Identification and Discrimination.” Topics in Catalysis 26: 163–171.CrossrefGoogle Scholar

  • Van Djik, H.A.J., J.H.B.J. Hoebink, and J.C. Schouten. 2003b. “A Mechanistic Study of the Fischer-Tropsch Synthesis Using Transient Isotopic Tracing. Part-2: Model Quantification.” Topics in Catalysis 26: 111–119.CrossrefGoogle Scholar

  • Van Santen, R.A., I.M. Ciobica, E. Van Steen, and M.M. Ghouri. 2011. “Mechanistic Issues in Fischer-Tropsch Catalysis.” Advances in Catalysis 54: 127–187.Web of ScienceGoogle Scholar

  • Van Santen, R.A., A.J. Markvoort, I.A W. Filot, M.M. Ghouri, and E.J.M. Hensen. 2013. “Mechanism and Microkinetics of the Fischer-Tropsch Reaction.” Physical Chemistry Chemical Physics 15: 17038–17063.CrossrefWeb of ScienceGoogle Scholar

  • Vynckier, E., and G.F. Froment. 1991. “Modeling of the Kinetics of Complex Processes Based upon Elementary Steps.” In Kinetic and Thermodynamic Lumping of Multicomponent Mixtures, edited by G. Astarita and S.I. Sandler. Amsterdam: Elsevier.Google Scholar

  • Yakubovich, M.N., and P.E. Strizhak. 2007. “Kinetic Models of the Molecular Mass Distribution of the Products of Fischer-Tropsch Synthesis at Cobalt Catalysis.” Theorical and Chemical Chemistry 43: 361–379.Google Scholar

  • Yan, Z., Z. Wang, D.B. Bukur, and W.D. Goodman. 2009. “Fischer-Tropsch Synthesis on a Model Co/SiO2 Catalyst.” Journal of Catalysis 268: 196–200.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-11-10

Accepted: 2018-04-12

Revised: 2018-03-27

Published Online: 2018-04-25


Citation Information: International Journal of Chemical Reactor Engineering, 20170219, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0219.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in