Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …

Fractal Reactor in Micro-Scale for Process Intensification

Yue Lu
  • College of Environmental and Chemical Engineering, Shanghai University, Shanghai 2000444, PR China
  • CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai 201203, PR China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gang Wang
  • CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai 201203, PR China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhuangdian Liang
  • CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai 201203, PR China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jian Sun
  • College of Environmental and Chemical Engineering, Shanghai University, Shanghai 2000444, PR China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu Gu
  • CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai 201203, PR China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhiyong Tang
  • Corresponding author
  • CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai 201203, PR China
  • School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-29 | DOI: https://doi.org/10.1515/ijcre-2017-0225


Fractal theory, with its novel architectures inspired by nature, provides some novel concepts for smart reactor design. Here, researches on the applications of fractal theory to micro-reactor design are reviewed, in term of its high surface area-to-volume ratio, rapid and direct numbering-up, safety, and precise control. In addition, two designs of fractal micro-reactor are introduced as typical examples. First, the H-type fractal structure is considered in the context of the design of a double-plate micro-reactor, which is used for photocatalytic reactions of CO2. Second, applications of fractal Hilbert curves are considered in the design of channel structures for gas-liquid reactions. These two fractal micro-reactors can be fabricated via 3D printing technology and used for CO2 conversion under mild conditions.

Keywords: micro-reactor; fractal; reactor design; process intensification


  • Almeida, L. C., F. J. Echave, O. Sanz, M. A. Centeno, G. Arzamendi, L. M. Gandia, E. F. Sousa-Aguiar, J. A. Odriozola, and M. Montes. 2011. “Fischer-Tropsch Synthesis in Microchannels.” Chemical Engineering Journal 167 (2–3): 536–44.CrossrefGoogle Scholar

  • Bailey, K. M. 1997. “Plate Heat Exchangers: A Compact Heat Exchanger Technology.” 1–9.Google Scholar

  • Baraldi, P. T., and V. Hessel. 2012. “Micro Reactor and Flow Chemistry for Industrial Applications in Drug Discovery and Development.” Green Processing And Synthesis 1 (2): 149–67.Google Scholar

  • Becht, S., R. Franke, A. Geisselmann, and H. Hahn. 2007. “Micro Process Technology as a Means of Process Intensification.” Chemical Engineering & Technology 30 (3): 295–99.CrossrefGoogle Scholar

  • Bejan, A. 2000. “From Heat Transfer Principles to Shape and Structure in Nature: Constructal Theory.” Journal of Heat Transfer-Transactions of the Asme 122 (3): 430–49.CrossrefGoogle Scholar

  • Bejan, A., and M. R. Errera. 1997. “Deterministic Tree Networks for Fluid Flow: Geometry for Minimal Flow Resistance between a Volume and One Point.” Fractals-An Interdisciplinary Journal on the Complex Geometry of Nature 5 (4): 685–95.Google Scholar

  • Bessoth, F. G., A. J. deMello, and A. Manz. 1999. “Microstructure for Efficient Continuous Flow Mixing.” Analytical Communications 36 (6): 213–15.CrossrefGoogle Scholar

  • Charpentier, J. C. 2012. “Did You Say “Reactor Design & Process Intensification”, or How to Produce Much More and Better while Consuming Much Less?” Chemical Engineering & Technology 35 (7): 1118–19.CrossrefGoogle Scholar

  • Chen, X. 2016. “Topology Optimization of Microfluidics — A Review.” Microchemical Journal 127: 52–61.CrossrefGoogle Scholar

  • Chen, X., and T. Li. 2016. “A Novel Design for Passive Misscromixers Based on Topology Optimization Method.” Biomedical Microdevices 18 (4): 57.CrossrefGoogle Scholar

  • Chen, X., T. Li, and Z. Hu. 2016. “A Novel Research on Serpentine Microchannels of Passive Micromixers.” Microsystem Technologies 23 (7): 2649–56.Google Scholar

  • Chen, X., T. Li, H. Zeng, Z. Hu, and B. Fu. 2016. “Numerical and Experimental Investigation on Micromixers with Serpentine Microchannels.” International Journal of Heat and Mass Transfer 98: 131–40.CrossrefGoogle Scholar

  • Chen, X., and J. Shen. 2016. “Numerical and Experimental Investigation on Splitting-And-Recombination Micromixer with E-Shape Mixing Units.” Microsystem Technologies 23 (10): 4671–77.Google Scholar

  • Chen, X., and J. Shen. 2017. “Numerical Analysis of Mixing Behaviors of Two Types of E-Shape Micromixers.” International Journal of Heat and Mass Transfer 106: 593–600.CrossrefGoogle Scholar

  • Chen, X. Y., and X. L. Wang. 2015. “Optimized Modular Design and Experiment for Staggered Herringbone Chaotic Micromixer.” International Journal Of Chemical Reactor Engineering 13 (3): 305–09.Google Scholar

  • Chen, Y., F. Yao, and X. Huang. 2015. “Mass Transfer and Reaction in Methanol Steam Reforming Reactor with Fractal Tree-Like Microchannel Network.” International Journal of Heat and Mass Transfer 87: 279–83.CrossrefGoogle Scholar

  • Chen, Y. P., and P. Cheng. 2002. “Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets.” International Journal of Heat and Mass Transfer 45 (13): 2643–48.CrossrefGoogle Scholar

  • Chen, Y. P., and P. Cheng. 2005. “An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets.” International Communications in Heat and Mass Transfer 32 (7): 931–38.CrossrefGoogle Scholar

  • Chin, P., W. S. Barney, and B. A. Pindzola. 2009. “Microstructured Reactors as Tools for the Intensification of Pharmaceutical Reactions and Processes.” Current Opinion In Drug Discovery & Development 12 (6): 848–61.Google Scholar

  • Cho, K.-H., J. Lee, H. S. Ahn, A. Bejan, and M. H. Kim. 2010. “Fluid Flow and Heat Transfer in Vascularized Cooling Plates.” International Journal of Heat and Mass Transfer 53 (19–20): 3607–14.CrossrefGoogle Scholar

  • Christensen, D., J. Nijenhuis, J. R. Van Ornmen, and M. O. Coppens. 2008. “Residence Times in Fluidized Beds with Secondary Gas Injection.” Powder Technology 180 (3): 321–31.CrossrefGoogle Scholar

  • Coppens, M.-O. 2012. “A Nature-Inspired Approach to Reactor and Catalysis Engineering.” Current Opinion in Chemical Engineering 1 (3): 281–89.CrossrefGoogle Scholar

  • Dertinger, S. K. W., D. T. Chiu, N. L. Jeon, and G. M. Whitesides. 2001. “Generation of Gradients Having Complex Shapes Using Microfluidic Networks.” Analytical Chemistry 73 (6): 1240–46.CrossrefGoogle Scholar

  • Dudukovic, Milorad P, F. L. Patrick, and L. Mills. 1999. “Multiphase Reactors -Revisited.” Chemical Engineering Science 54: 1975–95.CrossrefGoogle Scholar

  • Essex, C., and M. A. H. Nerenberg. 1990. “Fractal Dimension - Limit Capacity or Hausdorff Dimension.” American Journal Of Physics 58 (10): 986–88.CrossrefGoogle Scholar

  • Fakheri, A. 2008. “Efficiency and Effectiveness of Heat Exchanger Series.” Journal of Heat Transfer-Transactions of the Asme 130: 8.Google Scholar

  • Fan, L. L., X. L. Zhu, H. Zhao, J. Zhe, and L. Zhao. 2017. “Rapid Microfluidic Mixer Utilizing Sharp Corner Structures.” Microfluidics And Nanofluidics 21: 3.Google Scholar

  • Flogel, O., J. D. Codee, D. Seebach, and P. H. Seeberger. 2006. “Microreactor Synthesis of Beta-Peptides.” Angewandte Chemie (International Ed. In English) 45 (42): 7000–03.CrossrefGoogle Scholar

  • Gobby, D., P. Angeli, and A. Gavriilidis. 2001. “Mixing Characteristics of T-Type Microfluidic Mixers.” Journal of Micromechanics and Microengineering 11 (2): 126–32.CrossrefGoogle Scholar

  • Gorges, R., S. Meyer, and G. Kreisel. 2004. “Photocatalysis in Microreactors.” Journal of Photochemistry and Photobiology a-Chemistry 167 (2–3): 95–99.CrossrefGoogle Scholar

  • Guo, X., Y. Fan, and L. Luo. 2013. “Mixing Performance Assessment of a Multi-Channel Mini Heat Exchanger Reactor with Arborescent Distributor and Collector.” Chemical Engineering Journal 227: 116–27.CrossrefGoogle Scholar

  • Haase, S., D. Y. Murzin, and T. Salmi. 2016. “Review on Hydrodynamics and Mass Transfer in Minichannel Wall Reactors with Gas-Liquid Taylor Flow.” Chemical Engineering Research & Design 113: 304–29.CrossrefGoogle Scholar

  • Haswell, S. J. 2001. “Foreword: Micro Reactor Technology.” Analyst 126 (1): U1–U1.Google Scholar

  • Hirata, K., T. Ichii, H. Suzuki, T. Matsuura, K. Hosoda, and T. Yomo. 2012. “Fractal-Shaped Microchannel Design for a Kinetic Analysis of Biochemical Reaction in a Delay Line.” Microfluidics and Nanofluidics 13 (2): 273–78.CrossrefGoogle Scholar

  • Howell, P. B., D. R. Mott, S. Fertig, C. R. Kaplan, J. P. Golden, E. S. Oran, and F. S. Ligler. 2005. “A Microfluidic Mixer with Grooves Placed on the Top and Bottom of the Channel.” Lab on a Chip 5 (5): 524–30.CrossrefGoogle Scholar

  • Huang, Y.-X., J.-Y. Jang, and C.-H. Cheng. 2014. “Fractal Channel Design in a Micro Methanol Steam Reformer.” International Journal of Hydrogen Energy 39 (5): 1998–2007.CrossrefGoogle Scholar

  • Innovative technologies advance vacuum equipment application. 2001. “Don’t Limit the Use of Vacuum Equipment to Conventional Applications.” Chemical Processing 64 (11): 17–20.Google Scholar

  • Jen, C. P., C. Y. Wu, Y. C. Lin, and C. Y. Wu. 2003. “Design and Simulation of the Micromixer with Chaotic Advection in Twisted Microchannels.” Lab on a Chip 3 (2): 77–81.CrossrefGoogle Scholar

  • Kawaguchi, T., H. Miyata, K. Ataka, K. Mae, and J. Yoshida. 2005. “Room-Temperature Swern Oxidations by Using a Microscale Flow System.” Angewandte Chemie-International Edition 44 (16): 2413–16.CrossrefGoogle Scholar

  • Kenny, M., and J. J. Socha. 2015. “Does Murray’s Law Apply to the Tracheal System in Insects? A 3D Study of the Beetle Platynus Decentis.” Integrative And Comparative Biology 55: E95–E95.Google Scholar

  • Knitter, R., and M. A. Liauw. 2004. “Ceramic Microreactors for Heterogeneously Catalysed Gas-Phase Reactions.” Lab on a Chip 4 (4): 378–83.CrossrefGoogle Scholar

  • Kulkarni, A. A., N. Jha, A. Singh, S. Bhatnagar, and B. D. Kulkarni. 2011. “Fractal Impeller for Stirred Tank Reactors.” Industrial & Engineering Chemistry Research 50 (12): 7667–76.CrossrefGoogle Scholar

  • Lee, W. B., C. Y. Fu, W. H. Chang, H. L. You, C. H. Wang, M. S. Lee, and G. B. Lee. 2017. “A Microfluidic Device for Antimicrobial Susceptibility Testing Based on A Broth Dilution Method.” Biosensors & Bioelectronics 87: 669–78.CrossrefGoogle Scholar

  • Li, K., X. Luo, B. Niemeyer, M. Li. 2004. “The Automatic Optimal Control Process for the Operation Changeover of Heat Exchangers.” 8th International Conference on Advanced Computational Methods in Heat Transfer, WIT PRESS, Lisbon, Portugal.Google Scholar

  • Lim, T. W., Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim. 2011. “Three-Dimensionally Crossing Manifold Micro-Mixer for Fast Mixing in a Short Channel Length.” Lab on a Chip 11 (1): 100–03.CrossrefGoogle Scholar

  • Lin, Y. 2015. “Numerical Characterization of Simple Three-Dimensional Chaotic Micromixers.” Chemical Engineering Journal 277: 303–11.CrossrefGoogle Scholar

  • Lin, Y., G. J. Gerfen, D. L. Rousseau, and S. R. Yeh. 2003. “Ultrafast Microfluidic Mixer and Freeze-Quenching Device.” Analytical Chemistry 75 (20): 5381–86.Google Scholar

  • Luo, T., T. Gast, T. Vermeer, and S. A. Burns. 2015. “Murray’s Law and Vascular Branching in Normal and Diabetic Subjects.” Investigative Ophthalmology & Visual Science 56: 7.Google Scholar

  • Mandelbrot, B. B. 1998. “Is Nature Fractal?” Science 279 (5352): 783–+.CrossrefGoogle Scholar

  • Markovska, I., D. Rusev, and F. Yovkova. 2014. “Hydrodynamics of a Fractal Systems Reactor.” Journal of the Balkan Tribological Association 20 (1): 75–83.Google Scholar

  • Marques, M. P. C., P. Fernandes, J. M. S. Cabral, P. Znidarsic-Plazl, and I. Plazl. 2010. “Steroid Biotransformation: Microchannel Reactor Vs conventional reactor.”Journal Of Biotechnology 150: S423–S424.Google Scholar

  • Mengeaud, V., J. Josserand, and H. H. Girault. 2002. “Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study.” Analytical Chemistry 74 (16): 4279–86.CrossrefGoogle Scholar

  • Moulijn, J. A., A. Stankiewicz, J. Grievink, and A. Gorak. 2008. “Process Intensification and Process Systems Engineering: A Friendly Symbiosis.” Computers & Chemical Engineering 32 (1–2): 3–11.CrossrefGoogle Scholar

  • Mule, G. M., R. Lohia, and A. A. Kulkarni. 2016. “Effect of Number of Branches on the Performance of Fractal Impeller in a Stirred Tank: Mixing and Hydrodynamics.” Chemical Engineering Research & Design 108: 164–75.CrossrefGoogle Scholar

  • Pelleter, J., F. Renaud, and Fast Facile. 2009. “Safe Process Development of Nitration and Bromination Reactions Using Continuous Flow Reactors.” Organic Process Research & Development 13 (4): 698–705.CrossrefGoogle Scholar

  • Pence, D. V. 2002. “Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks with Fractal-Like Branching Channel Networks.” Microscale Thermophysical Engineering 6 (4): 319–30.Google Scholar

  • Posner, J. D., and J. G. Santiago. 2006. “Convective Instability of Electrokinetic Flows in a Cross-Shaped Microchannel.” Journal of Fluid Mechanics 555: 1–42.CrossrefGoogle Scholar

  • Radatz, H., J. M. Elischewski, M. Heitmann, G. Schembecker, and C. Bramsiepe. 2017. “Design of Equipment Modules for Flexibility.” Chemical Engineering Science 168: 271–88.CrossrefGoogle Scholar

  • Rao, H. V. 2000. “Isentropic Recuperative Heat Exchanger with Regenerative Work Transfer.” Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 214 (4): 609–18.CrossrefGoogle Scholar

  • Reniers, T. 1992. “Chaos and Fractals in Medicine - Attractors and Fractal Dimension.” 13th International Congress on Cybernetics, ASSOC INT CYBERNETIQUE, Namur, Belgium.Google Scholar

  • Renken, A. 2009. “Micro-Structured Reactors and Catalysts for the Intensification of Chemical Processes.” ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, Pohang, South Korea.Google Scholar

  • Salafia, C. M., T. L. Randell, R. G. Shah, G. S. Merz, D. P. Misra, P. Katzmann, R. K. Miller, et al. 2015. “Chorionic Plate Surface Vessel Networks and Murray’s Law: Relationship of Vessel Numbers and Calibers.” Reproductive Sciences 22: 286A–286A.Google Scholar

  • Styring, P. 2004. “Towards Liquid Crystal Synthesis Using High Throughput and Micro Reactor Technologies.” Molecular Crystals And Liquid Crystals 411: 1059–70.Google Scholar

  • Suzuki, T., T. Yamaguchi, Y. Fujishiro, M. Awano, and Y. Funahashi. 2010. “Recent Development of Microceramic Reactors for Advanced Ceramic Reactor System.” Journal of Fuel Cell Science and Technology Journal 7 (3): 031005–031005. DOI: .CrossrefGoogle Scholar

  • Thiele, M., A. Knauer, D. Malsch, A. Csaki, T. Henkel, J. M. Kohler, and W. Fritzsche. 2017. “Combination of Microfluidic High-Throughput Production and Parameter Screening for Efficient Shaping of Gold Nanocubes Using Dean-Flow Mixing.” Lab on a Chip 17 (8): 1487–95.Google Scholar

  • Ueno, K., F. Kitagawa, and N. Kitamura. 2002. “Photocyanation of Pyrene across an Oil/Water Interface in a Polymer Microchannel Chip.” Lab on a Chip 2 (4): 231–34.CrossrefGoogle Scholar

  • Ueno, M., H. Hisamoto, T. Kitamori, and S. Kobayashi. 2003 (3) 27. “Phase-transfer Alkylation Reactions using Microreactors.” Chemical Communications (8): 936–37. DOI: .CrossrefGoogle Scholar

  • van Den Bleek, Cor M, and J. C. S. Marc-Olivier Coppens. 2002. “Application of Chaos Analysis to Multiphase Reactors.” Chemical Engineering Science 57: 4763–78.CrossrefGoogle Scholar

  • Van der Vyver, H., Jaco Dirker, and J. P. Meyer. 2003. "Validation of a CFD Model of a Three-Dimensional Tube-in-Tube Heat Exchanger." Proceedings of Third International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia.Google Scholar

  • Van der Vyver, H., J. Dirker, and J. P. Meyer. 2006. Validation of a CFD Model of a Three-Dimensional Tube-In-Tube Heat Exchanger. 6 pp.Google Scholar

  • van Willigen, F. K., D. Christensen, J. R. van Ommen, and M. O. Coppens. 2005. “Imposing Dynamic Structures on Fluidised Beds.” Catalysis Today 105 (3–4): 560–68.CrossrefGoogle Scholar

  • Wang, L., W. Wu, and X. Li. 2013. “Numerical and Experimental Investigation of Mixing Characteristics in the Constructal Tree-Shaped Microchannel.” International Journal of Heat and Mass Transfer 67: 1014–23.CrossrefGoogle Scholar

  • Wang, Y., and T. T. Li. 2012. “The Energy Conservation Research of the Environment Chamber Based on the Total Heat Exchanger.” Advanced Materials Research 354–355: 739–43.Google Scholar

  • Wang, Y., and T. T. Li.2012. “The Energy Conservation Research of the Environment Chamber Based on the Total Heat Exchanger.” In Progress In Power And Electrical Engineering, Pts 1 And 2, Vols 354–355, edited by H. Zhang, Y. Fu and Z. Tang, 739–43.Google Scholar

  • Watts, P., and C. Wiles. 2012. “Micro Reactors, Flow Reactors and Continuous Flow Synthesis.” Journal Of Chemical Research 36 (4): 181–93.CrossrefGoogle Scholar

  • Wen, Z., X. Yu, S.-T. Tu, J. Yan, and E. Dahlquist. 2009. “Intensification of Biodiesel Synthesis Using Zigzag Micro-Channel Reactors.” Bioresource Technology 100 (12): 3054–60.CrossrefGoogle Scholar

  • Wiles, C., P. Watts, S. J. Haswell, and E. Pombo-Villar. 2001. “The Aldol Reaction of Silyl Enol Ethers within a Micro Reactor.” Lab on a Chip 1 (2): 100–01.CrossrefGoogle Scholar

  • Wiles, C., P. Watts, S. J. Haswell, and E. Pombo-Villar. 2002 (4) 11. “The Regioselective Preparation of 1,3-Diketones within a Micro reactor.” Chemical Communications (10): 1034–35. DOI: .CrossrefGoogle Scholar

  • Wootton, R. C. R., R. Fortt, and A. J. de Mello. 2002. “On-Chip Generation and Reaction of Unstable Intermediates-Monolithic Nanoreactors for Diazonium Chemistry: Azo Dyes.” Lab on a Chip 2 (1): 5–7.CrossrefGoogle Scholar

  • Yoshida, J.-i., A. Nagaki, and T. Yamada. 2008. “Flash Chemistry: Fast Chemical Synthesis by Using Microreactors.” Chemistry-A European Journal 14 (25): 7450–59.CrossrefGoogle Scholar

  • Yu, X.-f., C.-p. Zhang, J.-t. Teng, S.-y. Huang, S.-p. Jin, Y.-f. Lian, C.-h. Cheng, et al. 2012. “A Study on the Hydraulic and Thermal Characteristics in Fractal Tree-Like Microchannels by Numerical and Experimental Methods.” International Journal of Heat and Mass Transfer 55 (25–26): 7499–507.CrossrefGoogle Scholar

  • Zhang, X. N., S. Stefanick, and F. J. Villani. 2004. “Application of Microreactor Technology in Process Development.” Organic Process Research & Development 8 (3): 455–60.CrossrefGoogle Scholar

  • Zhou, J.-f., S.-w. Wu, Y. Chen, and C.-l. Shao. 2015. “Semi-Numerical Analysis of Heat Transfer Performance of Fractal Based Tube Bundle in Shell-And-Tube Heat Exchanger.” International Journal of Heat and Mass Transfer 84: 282–92.CrossrefGoogle Scholar

About the article

Received: 2017-11-22

Accepted: 2018-09-19

Revised: 2018-06-25

Published Online: 2018-09-29

Citation Information: International Journal of Chemical Reactor Engineering, 20170225, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0225.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in