Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 10

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

The Effect of Sn Content in a Pt/KIT-6 Catalyst Over its Performance in the Dehydrogenation of Propane

Alejandro Mata-Martinez
  • Universidad Autónoma de Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Facultad de Ciencias Químico Biológicas, 80013 Culiacán, Sinaloa, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio A. Jimenez-Lam
  • Universidad Autónoma de Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Facultad de Ciencias Químico Biológicas, 80013 Culiacán, Sinaloa, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alfonso Talavera-López
  • Universidad Autónoma Metropolitana unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, San Rafael Atlixco # 186, 09340 Ciudad de México, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio A. Gómez
  • Universidad Autónoma Metropolitana unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, San Rafael Atlixco # 186, 09340 Ciudad de México, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gustavo A. Fuentes
  • Universidad Autónoma Metropolitana unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, San Rafael Atlixco # 186, 09340 Ciudad de México, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lorenzo A. Picos-Corrales
  • Universidad Autónoma de Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Facultad de Ciencias Químico Biológicas, 80013 Culiacán, Sinaloa, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan C. Piña-Victoria
  • Universidad Autónoma Metropolitana unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, San Rafael Atlixco # 186, 09340 Ciudad de México, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jose P. Ruelas-Leyva
  • Corresponding author
  • Universidad Autónoma de Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Facultad de Ciencias Químico Biológicas, 80013 Culiacán, Sinaloa, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-18 | DOI: https://doi.org/10.1515/ijcre-2017-0237

Abstract

Propylene is one of the most important commodity chemicals. Its future demand is expected to exceed its production. Alternative routes to obtain this product need to be implemented. Dehydrogenation of propane assisted with catalyst is a promising route to meet demands. The Pt and Cr supported catalysts are amongst the most effective possibilities. However, Pt catalysts are preferred over Cr due to the toxic nature of Cr species. Despite the high performance of the Pt catalysts, they deactivate during reaction, mainly due to coke deposits blocking the active site and/or pores. This effect can be reduced with a support having high connectivity and surface area, like KIT-6. In this work the mesoporous silica KIT-6 was employed as support in a series of Pt-Sn catalysts. The influence of adding or increasing the weight % of Sn to Pt catalyst was studied. There were species of SnO2 and metallic Pt in the fresh catalysts. After reaction, it was found that in the catalysts with the lowest wt % of Sn (0.5), there were metallic Pt and a Pt-Sn alloy. In the rest of the used catalysts (containing 1.0, 1.5 and 2.0 wt % of Sn) the only detected specie was the Pt-Sn alloy. In the two most active catalysts (having 0.5 and 1.5 wt % of Sn), it was observed a difference of three times the quantity of coke deposited on the surface. The catalysts containing the highest coke deposits maintained its activity due to the high connectivity of the support.

Keywords: dehydrogenation of propane; Pt-Sn supported catalysts; KIT-6; deactivation; Coke

References

  • Aparicio-Mauricio, G., R.S. Ruiz, F. López-Isunza, and C.O. Castillo-Araiza. 2017. “A Simple Approach to Describe Hydrodynamics and Its Effect on Heat and Mass Transport in an Industrial Wall-Cooled Fixed Bed Catalytic Reactor: ODH of Ethane on A MoVNbTeO Formulation.” Chemical Engineering Journal 321: 584–599.Google Scholar

  • Argyle, M.D., and C.H. Bartholomew. 2015. “Heterogeneous Catalyst Deactivation and Regeneration: A Review.” Catalysts 5: 145–269.Google Scholar

  • Bai, L., Y. Zhou, Y. Zhang, H. Liu, and X. Sheng. 2009. “Effect of Magnesium Addition to PtSnNa/ZSM-5 on the Catalytic Properties in the Dehydrogenation of Propane.” Industrial & Engineering Chemistry Research 48: 9885–9891.Google Scholar

  • Bariås, O.A., A. Holmen, and E.A. Blekkan. 1996. “Propane Dehydrogenation over Supported Pt and Pt-Sn Catalysts: Catalyst Preparation, Characterization, and Activity Measurements.” Journal of Catalysis 158: 1–12.Google Scholar

  • Che-Galicia, G., R.S. Ruiz-Martínez, D. Rios-Morales, J.A. Ayala-Romero, and C.O. Castillo-Araiza. 2018. “Kinetic and Reactor Performance of a Ni-Based Catalyst during the Production of Ethene.” Chemical Engineering Communications 205: 1–15.Google Scholar

  • Chin, S., A. Hisyam, and H. Prasetiawan. 2015. “Modeling and Simulation Study of an Industrial Radial Moving Bed Reactor for Propane Dehydrogenation Process.” International Journal of Chemical Reactor Engineering 14: 33–44.Google Scholar

  • Corma, A., F.V. Melo, L. Sauvanaud, and F. Ortega. 2005. “Light Cracked Naphtha Processing: Controlling Chemistry for Maximum Propylene Production.” Catalysis today 107: 699–706.Google Scholar

  • Cortright, R.D., and J.A. Dumesic. 1995. “Effects of Potassium on Silica-Supported Pt and Pt/Sn Catalysts for Isobutane Dehydrogenation.” Journal of Catalysis 157: 576–583.Google Scholar

  • Guo, Y.H., C. Xia, and B.S. Liu. 2014. “Catalytic Properties and Stability of Cubic Mesoporous LaxNiyOz/KIT-6 Catalysts for CO2 Reforming of CH4.” Chemical Engineering Journal 237: 421–429.Google Scholar

  • Han, Z., S. Li, F. Jiang, T. Wang, X. Ma, and J. Gong. 2014. “Propane Dehydrogenation over Pt-Cu Bimetallic Catalysts: The Nature of Coke Deposition and the Role of Copper.” Nanoscale 6: 10000–10008.Google Scholar

  • Kleitz, F., F. Bérubé, R. Guillet-Nicolas, C.M. Yang, and M. Thommes. 2010. “Probing Adsorption, Pore Condensation, and Hysteresis Behaviour of Pure Fluids in Three-Dimensional Cubic Mesoporous KIT-6 Silica.” The Journal of Physical Chemistry C 114: 9344–9355.Google Scholar

  • Kleitz, F., S.H. Choi, and R. Ryoo. 2003. “Cubic Ia3d Large Mesoporous Silica: Synthesis and Replication to Platinum Nanowires, Carbon Nanorods and Carbon Nanotubes.” Chemical Communications 17: 2136–2137.Google Scholar

  • Korzyński, M.D., and M. Dincӑ. 2017. “Oxidative Dehydrogenation of Propane in the Realm of Metal-Organic Frameworks.” ACS Central Science 3: 10–12.Google Scholar

  • Lei, Y., B. Liu, J. Lu, R.J. Lobo-Lapidus, T. Wu, H. Feng, and J.T. Miller. 2012. “Synthesis of Pt–Pd Core–Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene.” Chemistry of Materials 24: 3525–3533.Google Scholar

  • Liu, M., W. Tang, Z. Xie, H. Yu, H. Yin, Y. Xu, and S. Zhou. 2017. “Design of Highly Efficient Pt-SnO2 Hydrogenation Nanocatalysts Using Pt@ Sn Core–Shell Nanoparticles.” ACS Catalysis 7: 1583–1591.Google Scholar

  • Nawaz, Z. 2015. “Dynamic Modeling of CATOFIN® Fixed-Bed Iso-Butane Dehydrogenation Reactor for Operational Optimization.” International Journal of Chemical Reactor Engineering 14: 491–515.Google Scholar

  • Nawaz, Z., X. Tang, Y. Wang, and F. Wei. 2009. “Parametric Characterization and Influence of Tin on the Performance of Pt− Sn/SAPO-34 Catalyst for Selective Propane Dehydrogenation to Propylene.” Industrial & Engineering Chemistry Research 49: 1274–1280.Google Scholar

  • Parlett, C.M.A., A. Aydin, L.J. Durndell, L. Frattini, M.A. Isaacs, A. F. Lee, and C. Wu. 2017. “Tailored Mesoporous Silica Support for Ni Catalyzed Hydrogen Production from Ethanol Steam Reforming.” Catalysis Communications 91: 76–79.Google Scholar

  • Roth, C., N. Martz, and H. Fuess. 2001. “Characterization of Different Pt–Ru Catalysts by X-Ray Diffraction and Transmission Electron Microscopy.” Physical Chemistry Chemical Physics 3: 315–319.Google Scholar

  • Ruelas-Leyva, J.P., and G.A. Fuentes. 2017. “Chiral Catalyst Deactivation during the Asymmetric Hydrogenation of Acetophenone.” Catalysts 7: 193–203.Google Scholar

  • Searles, K., G. Siddiqi, O.V. Safanova, and C. Copéret. 2017. “Silica-Supported Isolated Galium Sites as Highly Active, Selective and Stable Propane Dehydrogenation Catalysts.” Chemical Science 8: 2661–2666.Google Scholar

  • Shao, C.T., W.Z. Lang, X. Yan, and Y.J. Guo. 2017. “Catalytic Performance of Gallium Oxide Based-Catalysts for the Propane Dehydrogenation Reaction: Effects of Support and Loading Amount.” RSC Advances 7: 4710–4723.Google Scholar

  • Sharma, L.D., M. Kumar, A.K. Saxena, M. Chand, and J.K. Gupta. 2002. “Influence of Pore Size Distribution on Pt Dispersion in Pt-Sn/Al2O3 Reforming Catalyst.” Journal of Molecular Catalysis A: Chemical 185: 135–141.Google Scholar

  • Soni, K., K. C. Mouli, and Dalai. 2010. “Influence of Frame Connectivity of SBA-15 and KIT-6 Supported NiMo Catalyst for Hydrotreating of Gas Oil.” Catalysis Letters 136: 116–125.Google Scholar

  • Sun, P., G. Siddiqi, W.C. Vinning, M. Chi, and A.T. Bell. 2011. “Novel Pt/Mg(in)(Al)O Catalyst for Ethane and Propane Dehydrogenation.” Journal of Catalysis 282: 165–174.Google Scholar

  • Vu, B.K., M.B. Song, I.Y. Ahn, Y.W. Suh, D.J. Suh, W.I. Kim, and E.W. Shin. 2011a. “Pt–Sn Alloy Phases and Coke Mobility over Pt–Sn/Al2O3 and Pt–Sn/ZnAl2O4 Catalysts for Propane Dehydrogenation.” Applied Catalysis A: General 400: 25–33.Google Scholar

  • Vu, B.K., M.B. Song, I.Y. Ahn, Y.W. Suh, D.J. Suh, W.I. Kim, and E.W. Shin. 2011b. “Propane Dehydrogenation over Pt–Sn/Rare-earth-doped Al2O3: Influence of La, Ce, or Y on the Formation and Stability of Pt–Sn Alloys.” Catalysis Today 164: 214–220.Google Scholar

  • Wang, C., Y. Zhou, M. Ge, X. Xu, Z. Zhang, and J.Z. Jiang. 2010. “Large-Scale Synthesis of SnO2 Nanosheets with High Lithium Storage Capacity.” Journal of the American Chemical Society 132: 46–47.Google Scholar

  • Won, W., K.S. Lee, S. Lee, and C. Jung. 2010. “Repetitive Control and Online Optimization Propane Process.” Computers & Chemical Engineering 34: 508–517.Google Scholar

  • Yang, M., Y. Zhu, X. Zhou, Z. Sui, and D. Chen. 2012. “First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts.” ACS Catalysis 2: 1247–1258.Google Scholar

  • Yu, C., Q. Ge, H. Xu, and W. Li. 2006. “Effects of Ce Addition on the Pt-Sn/γ-Al2O3 Catalyst for Propane Dehydrogenation to Propylene.” Applied Catalysis A: General 315: 58–67.Google Scholar

  • Zhang, Y., Y. Zhou, H. Liu, Y. Wang, Y. Xu, and P. Wu. 2007. “Effect of La Addition on Catalytic Performance of PtSnNa/ZSM-5 Catalyst for Propane Dehydrogenation.” Applied Catalysis A: General 333: 202–210.Google Scholar

About the article

Received: 2017-12-07

Accepted: 2018-03-13

Revised: 2018-03-05

Published Online: 2018-04-18


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 10, 20170237, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0237.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in