Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Nitrogen Adsorption Compounds in the Presence of Dibenzothiophene on Mesoporous Materials for Obtaining Ultra-Low-Sulfur Diesel

J.C. García-Martínez
  • Corresponding author
  • Departamento de Energía, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa, CP. 02200, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C.R. Tapia Medina
  • Departamento de Energía, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa, CP. 02200, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M.M. González-Brambila
  • Departamento de Energía, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa, CP. 02200, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A.K. Medina-Mendoza
  • Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa, CP. 02200, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J.A. Colín-Luna
  • Departamento de Energía, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa, CP. 02200, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-19 | DOI: https://doi.org/10.1515/ijcre-2017-0238

Abstract

This work presents the adsorption process of nitrogen compounds, namely quinoline (Q), pyridine (Pyr), and indole (In), from liquid fuels such as gasoline and diesel containing dibenzothiophene (DBT) as sulfur-containing molecules. These compounds were adsorbed on mesoporous materials, namely SBA-15 and SBA-16, in calcined form in batch mode using dodecane as a solvent represent to a diesel mixture. The main conclusion of this research is that SBA-15 showed a higher nitrogen adsorption capacity than SBA-16 for all molecules containing nitrogen and sulfur. A comparative study of nitrogen and sulfur adsorption confirms that selective removal of nitrogen compounds from fuels using SBA-15 was better than that of sulfur compounds. Moreover, an increase in the adsorption of Q was found with SBA-15 material compared to SBA-16. To explain this behavior, the solids were characterized using X-ray diffraction (XRD), nitrogen physisorption, and High-Resolution Transmission Electron Microscopy (HRTEM). A pseudo-second-order kinetic model, rather than a first-order one, fitted the nitrogen adsorption data best. Moreover, the Langmuir model was suitable for describing the adsorption of nitrogen compounds from simulated diesel fuel, instead of the Freundlich model, which means that nitrogen compounds are adsorbed in a monolayer.

Keywords: adsorption; diesel; SBA-15; SBA-16; Langmuir

References

  • Almarri, M., X. Ma, and Ch Song. 2009. “Role of Surface Oxygen-Containing Functional Groups in Liquid-Phase Adsorption of Nitrogen Compounds on Carbon-Based Adsorbents.” Energy Fuel 23 (8): 3940–3947.CrossrefWeb of ScienceGoogle Scholar

  • Álvarez, A., J. Escobar, J. A. Toledo, V. Pérez, M. A. Cortés, M. Pérez, and E. Rivera. 2007. “HDS of Straight-Run Gas Oil at Various Nitrogen Contents. Comparison between Different Reaction Systems.” Fuel 86: 1240–1246.Web of ScienceCrossrefGoogle Scholar

  • Azizian, S., and R. N. Fallah. 2010. “A New Rate Equation for Adsorption Kinetics at Solid/Solution Interface.” Appllied Surface Science 256 (17): 5153–5156.CrossrefGoogle Scholar

  • Bondi, A. 1964. “van der Waals Volumes and Radii.” The Journal of Physical Chemistry 68 (3): 441–451. DOI: .CrossrefGoogle Scholar

  • Che-Galicia, G., C. Martínez-Vera, R.S. Ruiz-Martínez, and C.O. Castillo-Araiza. 2014. “Modelling of a Fixed Bed Adsorber Based on an Isotherm Model or an Apparent Kinetic Model.” Revista De Ingeniería Química 13 (2): 539–553.Google Scholar

  • Abhishek Dutta, Lingping Zhou, Carlos O. Castillo-Araiza, and Eric De Herdt. 2016. “Cadmium(II), Lead(II), and Copper(II) Biosorption on Baker’s Yeast (Saccharomyces cerevesiae).” Journal of Environmental Engineering 142 (9): C6015002–C6015002. DOI: .CrossrefGoogle Scholar

  • Galarneau, A., H. Cambon, F. DiRenzo, and F. Fajula. 2001. “True Microporosity and Surface Area of Mesoporous SBA-15 Silicas as a Function of Synthesis Temperature.” Langmuir 17 (26): 8328–8335.CrossrefGoogle Scholar

  • García-Martínez, J.C., C. O. Castillo-Araiza, J. A. De Los Reyes Heredia, E. Trejo, and A. Montesinos. 2012. “Kinetics of HDS and of the Inhibitory Effect of Quinoline on HDS of 4,6-DMDBT over Ni-Mo-P/Al2O3 Catalyst: Part I.” Chemical Engineering Journal 210: 53–62.CrossrefWeb of ScienceGoogle Scholar

  • García-Martínez, J.C., A. Dutta, G. Chávez, J. A. De Los Reyes Heredia, and C. O. Castillo-Araiza. 2016. “Hydrodesulfurization of Dibenzothiophene in a Micro Trickle Bed Catalytic Reactor under Operating Conditions from Reactive Distillation.” International Journal Chemical Reactions Engineering 14 (3): 769–783.Google Scholar

  • García-Martínez, J.C., H.A. González Uribe, M.M. González-Brambila, J.A. Colín-Luna, Y. E. Escobedo-García, A. López-Gaona, and L. Alvarado-Perea. 2018. “Selective Adsorption of Nitrogen Compounds Using Silica-Based Mesoporous Materials as a Pretreatment for Deep Hydrodesulfurization.” Catalysis Today 325: 40–48.Web of ScienceGoogle Scholar

  • Ho, Y. S., and G. McKay. 1999. “Pseudo-Second Order Model for Sorption Processes.” Process Biochem 34 (5): 451–465.CrossrefGoogle Scholar

  • Kwon, J.M., J.H. Moon, Y.S. Bae, D.G. Lee, H.C. Sohn, and C.H. Lee. 2008. “Adsorptive Desulfurization and Denitrogenation of Refinery Fuels Using Mesoporous Silica Adsorbents.” ChemSusChem 1 (4): 307–309.Web of ScienceCrossrefGoogle Scholar

  • Min, W. 2002. “A Unique Way to Make Ultra-Low Sulfur Diesel.” Korean Journal Chemical Engineering 19: 601–606.CrossrefGoogle Scholar

  • Otero-López, M., M.M. González-Brambila, A. Dutta, and C.O. Castillo-Araiza. 2016. “Elucidating Kinetic, Adsorption and Partitioning Phenomena from a Single Well Tracer Method: Laboratory and Bench Scale Studies.” International Journal of Chemical Reactor Engineering 14 (6): 1149–1168.Web of ScienceGoogle Scholar

  • Seung-Woo, L., R. Jae Wook, and M. Whasik. 2003. “SK Hydrodesulfurization (HDS) Pretreatment Technology for Ultra-Low Sulfur Diesel (ULSD) Production.” Catalysis Surveys from Asia 7 (4): 271–279.CrossrefGoogle Scholar

  • Shahriar, S., X. Han, H. Lin, and Y. Zheng. 2016. “Adsorptive Removal of Nitrogen and Sulfur Containing Compounds by SBA-15 Supported Nickel (II) and Tungsten Phosphide and the Adsorption Mechanisms.” International Journal Chemical Reactions Engineering 14 (4): 823–830.Google Scholar

  • Song, C. S. 2003. “An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel.” Catalysis Today 86 (1–4): 211–263.CrossrefGoogle Scholar

  • Song, C. S., and X. L. Ma. 2003. “New Design Approaches to Ultra-Clean Diesel Fuels by Deep Desulfurization and Deep Dearomatization.” Applications Catal B 41 (1–2): 207–238.CrossrefGoogle Scholar

  • Stevens, W. J. J., K. Lebeau, M. Mertens, G. Van Tendeloo, P. Cool, and E. F. Vansant. 2006. “Investigation of the Morphology of the Mesoporous SBA-16 and SBA-15 Materials.” Journal of Physical Chemical B 110 (18): 9183–9187.CrossrefGoogle Scholar

  • Van Der Voort, P., M. Benjelloun, and E. F. Vansant. 2002. “Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity.” Journal Physical Chemical B 106 (35): 9027–9032.CrossrefGoogle Scholar

  • Wen, J., X. Han, H. Lin, Y. Zheng, and W. Chu. 2010. “A Critical Study on the Adsorption of Heterocyclic of Sulfur and Nitrogen Compounds by Activated Carbon: Equilibrium, Kinetics and Thermodynamics.” Chemical Engineering Journal 164 (1): 29–36.Web of ScienceCrossrefGoogle Scholar

  • Zhao, D., J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky. 1998. “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores.” Science 279 (5350): 548–552.CrossrefGoogle Scholar

About the article

Received: 2017-12-08

Accepted: 2018-04-24

Revised: 2018-04-18

Published Online: 2018-06-19


Citation Information: International Journal of Chemical Reactor Engineering, 20170238, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0238.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in