Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 8

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Characterization and Catalytic Performance of Modified SBA-16 in Liquid Phase Reaction

Simsek Veli
  • Corresponding author
  • Chemical and Process Engineering Department,Bilecik Seyh Edebali University, Gulumbe Campus, 11210 Bilecik, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Avci Pinar
  • Chemical and Process Engineering Department,Bilecik Seyh Edebali University, Gulumbe Campus, 11210 Bilecik, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-15 | DOI: https://doi.org/10.1515/ijcre-2017-0246

Abstract

A new mesoporous silica SBA-16 (called SP-16) was prepared by the direct hydrothermal method using Pluronic F127 (triblock copolymer; EO106PO70EO106) as surfactant and TEOS (tetraethyl orthosilicate) as silica source. The catalyst property of the SBA-16 was attained by loading the STA (Silicotungstic acid) active compound. The loading contents of STA were determined between 5 % and 40 % based on weight ratio of W and Si (W/Si). Catalytic activities and sustainability of SP-16 (10–20 %, W/Si) catalysts were determined by esterification (liquid phase reaction methanol and acetic acid) reactions at 343-353K, under autogenic pressure, 1/1–1/2 feed molar ratios (methanol/acetic acid) and in the presence of 0.4 g catalyst in the semi-batch reactor for 6 - 24h. Acetic acid conversion values of 10 and 20 % catalysts with 1/1 molar ratio at the end of 24h were obtained as 32–52.9 % and 47–60 %, respectively. On the other hand, when 1/2 molar ratio at 353K was used, 20 % catalyst showed 82.2 % conversion. Moreover, a second reaction experiment of 10 % catalyst was also carried out in identical conditions in the presence of catalyst recovered after the first methyl acetate reaction. The first and second reaction results of 10 % catalyst indicated that catalytic activity and sustainability were preserved for both 6 and 24h analyses. The physical properties of the materials obtained were investigated by Nitrogen sorption at 77K (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy(FT-IR), Multiple Internal Reflection (DRIFT), Thermo-gravimetry/Differential thermal analysis(TG/DTA), Scanning electron microscope (SEM) and MAPPING analysis methods.

Keywords: hydrothermal; STA; SBA-16; esterification; catalytic activity

5 References

  • Barrault, J., S. Bancquart, and Y. Pouilloux. 2004. “Selective Glycerol Transesterification Over Mesoporous Basic Catalysts.” C.R. Chimie. 7 593–599.CrossrefGoogle Scholar

  • Bhorodwaj, S.K., and D.K. Dutta. 2011. “Activated Clay Supported Heteropoly Acid Catalysts for Esterification of Acetic Acid with Butanol.” Applied Clay Science 53 347–352.CrossrefWeb of ScienceGoogle Scholar

  • Bowker, M. 1998. The Basis and Applications of Heterogeneous Catalysis”,,, First 36. Great Britain by Bath Press: Oxford University PresGoogle Scholar

  • Brahmkhatri, V., and A. Patel. 2012. “Esterification of Lauric Acid with Butanol-1 over H3PW12O40 Supported on MCM-41.” Fuel 102: 72–77.Web of ScienceCrossrefGoogle Scholar

  • Brunel, D., A.C. Blane, A. Galarneau, and F. Fajula. 2002. “New Trends in the Design of Supported Catalysts on Mesoporous Silicas and Their Applications in Fine Chemicals.” Catal. Today 73 139–152.CrossrefGoogle Scholar

  • Cao, Z., P. Du, A. Duan, R. Guo, Z. Zhao, H., I. Zhang, P. Zheng, C. Xu, and Z. Chen. 2016. Chemical Engineering Science 155 141–152.CrossrefGoogle Scholar

  • Cavalleri, M., K. Hermann, A. Knop- Gericke, M. Havecker, R. Herbert, C. Hess, A. Oestereich, J. Döbler, and R. J. Schlögl. 2009. Catal 262 215–223. .CrossrefGoogle Scholar

  • Cedric, J., G. 2018. “Stochastic Models of Disordered Mesoporous Materials for Small-Angle Scattering Analysis and More.” Microporous and Mesoporous Materials 257 pages 62–78. .CrossrefWeb of ScienceGoogle Scholar

  • Diaz, I., F. Mohino, J. Perez-Pariente, and E. Sastre. 2001. “Synthesis, Characterization and Catalytic Activity of MCM-41Type Mesoporous Silicas Functionalized with Sulfonic Acid.” Applications Catal., A 205 19–30.CrossrefGoogle Scholar

  • Fulvio, P.F., S. Pikus, and M. Jaroinec. 2005. “Short-Time Synthesis of SBA-15 Using Various Silica Sources.” Journal of Colloid and Interface Science 287 717–720.CrossrefGoogle Scholar

  • Goyal, H.B., D. Seal, and R.C. Saxena. 2008. “Bio-Fuels from Thermochemical Conversion of Renewable Resource: A Review.” Renewable and Sustainable Energy Reviews 12 504–517.CrossrefGoogle Scholar

  • Hagen, J. 1999. Industrial Catalysis a Pratical Approach,,, Fourth 1– 13. Hershey, PA: Wiley-VCHGoogle Scholar

  • Hess, C. 2009. ChemPhysChem. 10 319–326. .CrossrefGoogle Scholar

  • Juan, J.C., J. Zhang, and M.A. Yarmo. 2007. “12-Tungstophosphoric Acid Supported on MCM-41 for Esterification of Fatty Acid under Solvent-Free Condition.” Journal Molecular Catal A: Chemical 267 (1-2): 265–271.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, G. S., M. Vishnuvartan, M. Palanichamy, and V. Murugesan. 2006. “SBA-15 Supported HPW: Effective Catalytic Performance in the Alkylation of Phenol. J. Mol.” Catal A: Chemical 260 49–55.CrossrefGoogle Scholar

  • Liu, Q. Y., W. L. Wu, J. Wang, X. Q. Ren, and Y. R. Wang. 2004. “Characterization of 12-Tungstophosphoric Acid Impregnated on Mesoporous Silica SBA-15 and Its Catalytic Performance in Isopropylation of Naphthalene with Isopropanol” Microporous Mesoporus Materials 76 51–60.CrossrefGoogle Scholar

  • Melero, J.A., R. Grieken, G. Morales, and M. Panioguna. 2007. “Acidic Mesoporous Silica for the Acetylation of Glycerol: Synthesis Bioadditives to Petrol Fuel.” Energy and Fuels 21 1782–1791.CrossrefGoogle Scholar

  • Ouargli, R., R. Hamacha, N. Benharrats, A. Boos, and A. Bengueddach. 2015. “β-diketone Functionalized SBA-15 and SBA-16 or Rapid Liquid–Solid Extraction of Copper.” Journal Porous Materials 22 511–520.Web of ScienceCrossrefGoogle Scholar

  • Quargli-Saker, R., N. Bouazizi, B. Boukoussa, D. Barrimo, A. Paola-Nunes-Beltrao, and A. Azzouz. 2017. “Metal-Loaded SBA-16-like Silica- Correlation between Basicity and Affinity Towards Hydrogen.” Applied Surface Science 411 476–486.CrossrefWeb of ScienceGoogle Scholar

  • Sawant, D. P., A. Vinu, J. Justus, P. Srinivasu, and S. B. Halligudi. 2007. “Catalytic Performances of Silicotungstic Acid/Zirconia Supported SBA-15 in an Esterification of Benzyl Alcohol with Acetic Acid.” Journal of Molecular Catalysis A: Chemical 276 150–157.CrossrefWeb of ScienceGoogle Scholar

  • Simsek, V. 2008. Application of Mercury Porosimetry to Three Dimensional (3D) Stochastic Network Model and Researching Network Size Effect on Structure of Porous Media. M.Sc. Thesis. page1–10. june. Gazi university graduate school of natural and applied sciences: Turkey.Google Scholar

  • Simsek, V. 2015. Synthesis, Characterization and Investigation Catalytic Activity in the Glycerol Esterification Reaction of Acidic Catalyst, Ph.D. Thesis. january. Gazi university graduate school of natural and applied sciences: Turkey.Google Scholar

  • Simsek, V., L. Degirmenci, and K. Murtezaoglu. 2017. “Esterification of Lauric Acid with Glycerol in the Presence of STA/MCM-41 Catalysts.” International Journal ChemReact Engineering Volume 15 (2): 1–9.Google Scholar

  • Şimşek, V., L. Değirmenci, and K. Mürtezaoğlu. 2015. “Sustainable Activity of Hydrothermally Synthesized Mesoporous Silicates in Acetic Acid Esterification.” Turkish Journal of Chemistry 39 683–696.CrossrefWeb of ScienceGoogle Scholar

  • Simsek, V., Z. Pat, and K. Mürtezaoğlu. 2016. “Synthesis and Characterization of Silica Based Acidic Catalysts with the Impregnation Method.” 1st International Black SeaCongress on EnvironmentalSciences Full paperbook. 1 247–256.Google Scholar

  • Torabi, B., and E. Ameri. 2016. “Methyl Acetate Production by Coupled Esterification-Reaction Process Using Synthesized Cross-Linked PVA/silica Nanocomposite Membranes.” Chemical Engineering Journal 288: 461–472.Web of ScienceCrossrefGoogle Scholar

  • Tu, J., R. Wang, W. Geng, X. Lai, T. Zhang, N. Li, and X. Li. 2009. “Humidity Sensitive Property of Li-Doped 3D Periodic Esoporous Silica SBA-16.” Sens. ActuatorsB 136 392–398.CrossrefGoogle Scholar

  • Ueno, Y., A. Tate, O. Niwa, H.S. Zhou, T. Yamada, and I. Honma. 2005. “High Benzene Selectivity of Mesoporous Silicate for BTX Gas Sensing Microfluidic Devices.” Analysis Bioanal.Chem 382: 804–809.CrossrefGoogle Scholar

  • Varisli, D., T. Dogu, and G. Dogu. 2009. “Novel Mesoporous Nanocomposite WOx-silicate Acidic Catalysts: Ethylene and Diethylether from Ethanol.” IndEng Chemical Researcher 48 9394–9401.Google Scholar

  • Yang, L., Y. Qui, X. Yuan, J. Shen, and J. Kim. 2005. “Direct Synthesis, Characterization and Catalytic Application of SBA-15 Containing Heteropolyacid H3PW12O40.” Journal of Molecular Catalysis A: Chemical 229 199–205.CrossrefGoogle Scholar

  • Zhang, S., S. Muratsugu, N. Ishiguro, and M. Tada. 2013. “Ceria-Doped Ni/SBA-16 Catalysts for Dry Reforming of Methane.” ACSCatal 3 1855–1864.Google Scholar

  • Zhou, C.H., J.N. Beltramini, Y.X. Fan, and G.Q. Lu. 2008. “Chemoselective Catalytic Conversion of Glycerol as a Biorenewable Source to Valuable Commodity Chemicals.” Chem.Soc.Rev. 37 527–549.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-12-16

Accepted: 2018-06-05

Revised: 2018-01-31

Published Online: 2018-06-15


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 8, 20170246, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0246.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in