Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 10

Dehydrogenation of Propane to Propylene with Highly Stable Catalysts of Pt-Sn Supported Over Mesoporous Silica KIT-6

Jose P. Ruelas-Leyva
  • Corresponding author
  • Universidad Autónoma de Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Facultad de Ciencias Químico Biológicas, 80013 Culiacán, Sinaloa, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alejandro Mata-Martinez
  • Universidad Autónoma de Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Facultad de Ciencias Químico Biológicas, 80013 Culiacán, Sinaloa, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alfonso Talavera-López
  • Universidad Autónoma Metropolitana unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, San Rafael Atlixco # 186, 09340 Ciudad de México, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio A. Gómez
  • Universidad Autónoma Metropolitana unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, San Rafael Atlixco # 186, 09340 Ciudad de México, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio A. Jimenez-Lam
  • Universidad Autónoma de Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Facultad de Ciencias Químico Biológicas, 80013 Culiacán, Sinaloa, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gustavo A. Fuentes
  • Universidad Autónoma Metropolitana unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, San Rafael Atlixco # 186, 09340 Ciudad de México, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-18 | DOI: https://doi.org/10.1515/ijcre-2017-0247

Abstract

During several reactions, similar to dehydrogenation of propane to propylene, coke is one of the main reasons for the catalyst deactivation. The coke formation and further deactivation of the catalyst are strongly dependent to the active site in the catalyst and/or the properties of the support. KIT-6 with interconnected porous and high surface area can handle with the coke formation, and can disperse easily the deposited Pt nanoparticles. In this sense, a series of Pt-Sn/KIT-6 catalysts were synthesized with distinct Sn loadings and used in the dehydrogenation of propane. The performance of these catalysts during reaction varied with the Sn loading. The specific activities for propylene formation obtained with the catalysts were comparable to the best result reported in the literature. The nanoparticles present in the catalyst through pretreatment and reaction condition was the Pt-Sn alloy (1:1 atomic ratio), and that alloy is suggested to be the active phase. This Pt-Sn alloy was stable during the entire reaction time, that even in two catalysts containing a considerable amount of coke, deactivation was not observed. Also, the support (KIT-6) with high connectivity helped to avoid deactivation by coke.

Keywords: propane dehydrogenation; Pt-Sn catalysts; coke deposits; Pt-Sn alloy; stable catalysts; pore connectivity

References

  • Bariås, O.A., A. Holmen, and E.A. Blekkan. 1996. “Propane Dehydrogenation over Supported Pt and Pt–Sn Catalysts: Catalyst Preparation, Characterization, and Activity Measurements.” Journal of Catalysis 158: 1–12.CrossrefGoogle Scholar

  • Baronetti, G.T., S.R. De Miguel, O.A. Scelza, and A.A. Castro. 1986. “State of Metallic Phase in PtSn/Al2O3 Catalysts Prepared by Different Deposition Techniques.” Applied Catalysis 24 (1-2): 109–116.CrossrefGoogle Scholar

  • Che-Galicia, G., R. Quintana-Solórzano, R.S. Ruiz-Martínez, J.S. Valente, and C.O. Castillo-Araiza. 2014. “Kinetic Modeling of the Oxidative Dehydrogenation of Ethane to Ethylene over a MoVTeNbO Catalytic System.” Chemical Engineering Journal 252: 75–88.Web of ScienceCrossrefGoogle Scholar

  • Che-Galicia, G., R.S. Ruiz-Martínez, F. López-Isunza, and C.O. Castillo-Araiza. 2015. “Modeling of Oxidative Dehydrogenation of Ethane to Ethylene on a MoVTeNbO/TiO2 Catalyst in an Industrial-Scale Packed Bed Catalytic Reactor.” Chemical Engineering Journal 280: 682–694.CrossrefWeb of ScienceGoogle Scholar

  • Chen, D., K. Moljord, and A. Holmen. 2012. “A Methanol to Olefins Review: Diffusion, Coke Formation and Deactivation on SAPO Type Catalysts.” Microporous and Mesoporous Materials 164: 239–250.Web of ScienceCrossrefGoogle Scholar

  • Collett, C.H., and J. McGregor. 2016. “Things Go Better with Coke: The Beneficial Role of Carbonaceous Deposits in Heterogeneous Catalysis.” Catalysis Science & Technology 6: 363–378.CrossrefWeb of ScienceGoogle Scholar

  • Deng, L., T. Shishido, K. Teramura, and T. Tanaka. 2014. “Effect of Reduction Method on the Activity of Pt–Sn/SiO2 for Dehydrogenation of Propane.” Catalysis Today 232: 33–39.CrossrefGoogle Scholar

  • Guisnet, M., and P. Magnoux. 2001. “Organic Chemistry of Coke Formation.” Applied Catalysis A-Gen 212: 83–96.CrossrefGoogle Scholar

  • Jiang, W., R. Huang, P. Li, S. Feng, G. Zhou, C. Yu, and Q. Xu. 2016. “Metathesis and Isomerization of N-Butene and Ethylene over WO3/SiO2 and MgO Catalysts: Thermodynamic and Experimental Analysis.” Applied Catalysis A-Gen 517: 227–235.CrossrefWeb of ScienceGoogle Scholar

  • Katsuki, H., E.K. Choi, W.J. Lee, K.T. Hwang, W.S. Cho, W. Huang, and S. Komarneni. 2018. “Ultrafast Microwave-Hydrothermal Synthesis of Hexagonal Plates of Hematite.” Materials Chemistry and Physical 205: 210–216.CrossrefGoogle Scholar

  • Kleitz, F., F. Berube, R. Guillet-Nicolas, C.M. Yang, and M. Thommes. 2010. “Probing Adsorption, Pore Condensation, and Hysteresis Behavior of Pure Fluids in Three-Dimensional Cubic Mesoporous KIT-6 Silica.” The Journal of Physical Chemistry C 114: 9344–9355.CrossrefGoogle Scholar

  • Kleitz, F., S.H. Choi, and R. Ryoo. 2003. “Cubic Ia 3 D Large Mesoporous Silica: Synthesis and Replication to Platinum Nanowires, Carbon Nanorods and Carbon Nanotubes.” Chemical Communications 17: 2136–2137.Google Scholar

  • Kotanjac, Z.S., J.P. Niederer, and G.F. Versteeg. 2007. “Influence of the Pressure on the Product Distribution in the Oxidative Dehydrogenation of Propane over a Ga2O3/MoO3 Catalyst.” International Journal of Chemical Reactor Engineering 5: 1.Google Scholar

  • Kumar, B.R. 2006. “Effect of Silica Support on V-Mg-O Catalysts during ODH of Propane: Experimental and Modeling Using Genetic Algorithms.” International Journal of Chemical Reactor Engineering 4: 1.Google Scholar

  • Kumar, M.S., D. Chen, A. Holmen, and J.C. Walmsley. 2009. “Dehydrogenation of Propane over Pt-SBA-15 and Pt-Sn-SBA-15: Effect of Sn on the Dispersion of Pt and Catalytic Behavior.” Catalysis Today 142: 17–23.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, M.S., D. Chen, J.C. Walmsley, and A. Holmen. 2008. “Dehydrogenation of Propane over Pt-SBA-15: Effect of Pt Particle Size.” Catalysis Communications 9: 747–750.Web of ScienceCrossrefGoogle Scholar

  • Liu, Q., J. Li, Z. Zhao, M. Gao, L. Kong, J. Liu, and Y. Wei. 2016. “Design, Synthesis and Catalytic Performance of Vanadium-Incorporated Mesoporous Silica KIT-6 Catalysts for the Oxidative Dehydrogenation of Propane to Propylene.” Catalysis Science & Technology 6: 5927–5941.Web of ScienceCrossrefGoogle Scholar

  • Nava, N., and T. Viveros. 2000. “Effect of the Support on the Structural Characteristics of Tin.” Journal of Radioanalytical and Nuclear Chemistry 243: 689–696.CrossrefGoogle Scholar

  • Sangaletti, L., L.E. Depero, B. Allieri, F. Pioselli, E. Comini, G. Sberveglieri, and M. Zocchi. 1998. “Oxidation of Sn Thin Films to SnO2. Micro-Raman Mapping and X-Ray Diffraction Studies.” Journal of Materials Research 13: 2457–2460.CrossrefGoogle Scholar

  • Sattler, J.J., J. Ruiz-Martinez, E. Santillan-Jimenez, and B.M. Weckhuysen. 2014. “Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides.” Chemical Reviews 114: 10613–10653.Web of ScienceCrossrefGoogle Scholar

  • Sharma, L.D., M. Kumar, A.K. Saxena, D.S. Rawat, and T.P. Rao. 1998. “The Determination of Accessible Pt Metal Fraction in Pt–Sn/Al2O3 Reforming Catalyst.” Applied Catalysis A-Gen 168: 251–259.CrossrefGoogle Scholar

  • Shi, L., G.M. Deng, W.C. Li, S. Miao, Q.N. Wang, W.P. Zhang, and A.H. Lu. 2015. “Al2O3 Nanosheets Rich in Pentacoordinate Al3+ Ions Stabilize Pt‐Sn Clusters for Propane Dehydrogenation.” Angewandte Chemie International Edition 54: 13994–13998.CrossrefWeb of ScienceGoogle Scholar

  • Shi, Y., X. Li, X. Rong, B. Gu, H. Wei, and C. Sun. 2017. “Influence of Support on the Catalytic Properties of Pt–Sn–K/θ-Al2O3 for Propane Dehydrogenation.” RSC Advances 7: 19841–19848.CrossrefWeb of ScienceGoogle Scholar

  • Srinivasan, R., and B.H. Davis. 1992. “The Structure of Platinum-Tin Reforming Catalysts.” Platinum Metals Reviews 36: 151–163.Google Scholar

  • Srinivasan, R., R.J. De Angelis, and B.H. Davis. 1990. “Structural Studies of Pt-Sn Catalysts on High and Low Surface Area Alumina Supports.” Catalysis Letters 4: 303–308.CrossrefGoogle Scholar

  • Tan, S., B. Hu, W.G. Kim, S.H. Pang, J.S. Moore, Y. Liu, … C.W. Jones. 2016. “Propane Dehydrogenation over Alumina-Supported Iron/Phosphorus Catalysts: Structural Evolution of Iron Species Leading to High Activity and Propylene Selectivity.” ACS Catalysis 6: 5673–5683.CrossrefWeb of ScienceGoogle Scholar

  • Wang, X., L. Altmann, J. StöVer, V. Zielasek, M. BäUmer, K. Al-Shamery, and J. Kolny-Olesiak. 2012. “Pt/Sn Intermetallic, Core/Shell and Alloy Nanoparticles: Colloidal Synthesis and Structural Control.” Chemistry of Materials 25: 1400–1407.Web of ScienceGoogle Scholar

  • Xu, G., J. Zhang, S. Wang, Y. Zhao, and X. Ma. 2016. “A Well Fabricated PtSn/SiO2 Catalyst with Enhanced Synergy between Pt and Sn for Acetic Acid Hydrogenation to Ethanol.” RSC Advances 6: 51005–51013.CrossrefWeb of ScienceGoogle Scholar

  • Zhang, F., Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu, and D. Zhao. 2005. “Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15.” The Journal of Physical Chemical B 109: 8723–8732.CrossrefGoogle Scholar

  • Zhang, Y., Y. Zhou, J. Shi, S. Zhou, X. Sheng, Z. Zhang, and S. Xiang. 2014. “Comparative Study of Bimetallic Pt-Sn Catalysts Supported on Different Supports for Propane Dehydrogenation.” Journal of Molecular Catalysis A-Chem 381: 138–147.CrossrefWeb of ScienceGoogle Scholar

  • Zhang, Y., Y. Zhou, K. Yang, Y. Li, Y. Wang, Y. Xu, and P. Wu. 2006. “Effect of Hydrothermal Treatment on Catalytic Properties of PtSnNa/ZSM-5 Catalyst for Propane Dehydrogenation.” Microporous and Mesoporous Materials 96: 245–254.CrossrefGoogle Scholar

  • Zhao, D., J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky. 1998. “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores.” Science 279: 548–552.CrossrefGoogle Scholar

  • Zhao, D., J. Sun, Q. Li, and G.D. Stucky. 2000. “Morphological Control of Highly Ordered Mesoporous Silica SBA-15.” Chemistry of Materials 12: 275–279.CrossrefGoogle Scholar

About the article

Received: 2017-12-18

Revised: 2018-03-08

Accepted: 2018-03-13

Published Online: 2018-04-18


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 10, 20170247, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0247.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in