Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Volume 16, Issue 7

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Hydrogen Generation in Water Splitting Reaction Using Aluminum: Effect of NaOH Concentration and Reaction Modelling Using SCM

Shyam P. Tekade / Diwakar Z. Shende
  • Corresponding author
  • Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kailas L. Wasewar
  • Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-03 | DOI: https://doi.org/10.1515/ijcre-2017-0250

Abstract

The kinetics of the heterogeneous reaction of metal aluminum with water was studied in presence of NaOH as an activator for generating the hydrogen. Aluminum (Al) powder of average size of 100 µm and foil of thickness of 11 µm were utilized to study the effect of the shape of particles of aluminum on hydrogen generation. The hydrogen generation was reported at various concentrations of NaOH, ranging from 0.12 N to 0.67 N. The fractional conversion of Al was found to be 0.66 at 0.12 N and 1.0 at 0.185 N, 0.37 N, 0.54 N, 0.65 N NaOH concentration. The activation energy of the reaction has been determined at the stoichiometric concentration of 0.185 N NaOH at the temperature ranging from 298 to 323 K. An attempt was made to model the reaction using Shrinking Core Model (SCM) for determining the rate controlling mechanism for the heterogeneous reaction. The reaction was observed to follow the first order kinetics and the average value of reaction rate constant using Al power and foil was found to be 27.322 x 10-4 cm/min and 2.125 x 10-4 cm/min respectively.

Keywords: activator; hydrogen generation; reaction modelling; Shrinking Core Model

References

  • Belitskus, David. 1970. “Reaction of Aluminum with Sodium Hydroxide Solution as a Source of Hydrogen.” Journal of the Electrochemical Society: Electrochemical Technology 117: 1197–1199.Google Scholar

  • Boukerche, I., S. Djerad, L. Benmansour, L. Tifouti, and K. Saleh. 2014. “Degradability of Aluminum in Acidic and Alkaline Solutions.” Corrosion Science 78: 343–352.Web of ScienceCrossrefGoogle Scholar

  • Bunker, B., G. Nelson, K. Zavadil, J. Barbour, F. Wall, and J. Sullivan. 2002. “Hydration of Passive Oxide Films on Aluminum.” Journal Physical Chemical B 106: 4705–4713.CrossrefGoogle Scholar

  • Charles, T., and S. William. 1990. “The Chemistry of Aluminum in the Environment.” Environmental Geochemistry and Health 12: 28–49.CrossrefGoogle Scholar

  • Das, LM. 1996. “Hydrogen-Oxygen Reaction Mechanism and Its Implication to Hydrogen Engine Combustion.” International Journal of Hydrogen Energy 21: 703–715.CrossrefGoogle Scholar

  • Durbin, D., and C. Malardier-Jugroot. 2013. “Review of Hydrogen Storage Techniques for on Board Vehicle Applications.” International Journal Hydrogen Energy 38: 14595–14617.Web of ScienceCrossrefGoogle Scholar

  • Federica, F., M. Massimo, M. Luca, and G. Valeri. 2010. “Combined Hydrogen Production and Power Generation from Aluminum Combustion with Water: Analysisof the Concept.” International Journal Hydrogen Energy 35: 1548–1559.CrossrefGoogle Scholar

  • Huihu, W., C. Ying, D. Shijie, L. Zhifeng, Z. Qingbiao, L. Ping, and X. Zhixiong. 2013. “Investigation on Hydrogen Production Using Multicomponent Aluminum Alloys at Mild Conditions and Its Mechanism.” International Journal of Hydrogen Energy 38: 1236–1243.CrossrefWeb of ScienceGoogle Scholar

  • Jamal, Y., and M. Wyszynski. 1994. “On Board Generation of Hydrogen - Rich Gaseous Fuels - A Review.” International Journal Hydrogen Energy 19: 557–575.CrossrefGoogle Scholar

  • Jeffrey, TZ., MW. Jerry, AK. Robert, and C. Go. 2011. “Liquid Phase-Enabled Reaction of Al-Ga and Al-Ga-In-Sn Alloys with Water.” International Journal of Hydrogen Energy 36: 5271–5279.Web of ScienceCrossrefGoogle Scholar

  • Jorge, M., S. Lluís, MC. Angélica, M. Maria, and Juan Casado. 2011. “Hydrogen Generation by Aluminum Corrosion in Aqueous Alkaline Solutions of Inorganic Promoters: The AlHidrox Process.” Energy 36: 2493–2501.Web of ScienceCrossrefGoogle Scholar

  • Korosh, M., and A. Babak. 2010. “Enhancement of Hydrogen Generation Rate in Reaction of Aluminum with Water.” International Journal of Hydrogen Energy 35: 5227–5232.CrossrefWeb of ScienceGoogle Scholar

  • Kwang, E., JK. Min, O. SeKwon, C. EunAe, and K. HyukSang. 2011. “Design of Ternary Al-Sn-Fe Alloy for Fast On-Board Hydrogen Production, and Its Application to PEM Fuel Cell.” International Journal of Hydrogen Energy 36: 11825–11831.CrossrefWeb of ScienceGoogle Scholar

  • Levenspiel, Octave. 1999. Chemical Reaction Engineering. Hoboken, NJ: John Wiley and sons.Google Scholar

  • Lluis, S., MC. Angelica, M. Jorge, and M. Maria. 2009. “Hydrogen Generation by Aluminum Corrosion in Seawater Promoted by Suspensions of Aluminum Hydroxide.” International Journal of Hydrogen Energy 34: 8511–8518.Web of ScienceCrossrefGoogle Scholar

  • Lluis, S., M. Jorge, M. Maria, and C. Juan. 2007a. “Synergistic Hydrogen Generation from Aluminum, Aluminum Alloys and Sodium Borohydride in Aqueous Solutions.” International Journal Hydrogen Energy 32: 4702–4710.Web of ScienceCrossrefGoogle Scholar

  • Lluis, S., M. Jorge, M. Maria, and C. Juan. 2007b. “Aluminum and Aluminum Alloys as Sources of Hydrogen for Fuel Cell Applications.” Journal of Power Sources 169: 144–149.Web of ScienceCrossrefGoogle Scholar

  • Louis, S., and Z. Andreas. 2001. “Hydrogen Storage Materials for Mobile Applications.” Nature 414: 391–404.Google Scholar

  • Martinez, S., W. Benitesa, A. Gallegosa, and P. Sebastian. 2005. “Recycling of Aluminum to Produce Green Energy”.” Solar Energy Materials Solar Cells 88: 237–243.CrossrefGoogle Scholar

  • Michael, H 2010. Handbook of Hydrogen Storage: New Materials for Future Energy Storage. Weinheim: Wiley-VCH.Google Scholar

  • Nicola, A., and B. Vincenzo. 2011. “The Hydrogen Issue.” Chemical Sus Chemical 4: 21–36.CrossrefGoogle Scholar

  • Shkolnikov, EI., A. Zhuk, and M. Vlaskin. 2011. “Aluminum as Energy Carrier: Feasibility Analysis and Current Technologies Overview.” Renewable and Sustainable Energy Reviews 15: 4611–4623.CrossrefWeb of ScienceGoogle Scholar

  • Susana, SM., LB. Wendy, A. Alberto, G. Alvarez, and PJ. Sebastian. 2005. “Recycling of Aluminum to Produce Green Energy.” Solar Energy Materials & Solar Cells 88: 237–243.CrossrefGoogle Scholar

  • Sushant, K. 2015. Clean Hydrogen Production Methods, Sodium Hydroxide for Clean Hydrogen Production. Basel: Springer International Publishing.Google Scholar

  • Valery, R., and G. Alon. 2010. “Application of Activated Aluminum Powder for Generation of Hydrogen from Water.” International Journal of Hydrogen Energy 35: 10898–10904.CrossrefWeb of ScienceGoogle Scholar

  • Vezirocjlu, N., and F. Barbir. 1992. “Hydrogen: The Wonder Fuel.” International Journal Hydrogen Energy 17: 391–404.CrossrefGoogle Scholar

  • Wang, H., DYC. Leung, MKH. Leung, and M. Ni. 2009. “A Review on Hydrogen Production Using Aluminum and Aluminum Alloys.” Renewable and Sustainable Energy Reviews. 13: 845–853.CrossrefWeb of ScienceGoogle Scholar

  • Xingyu, C., Z. Zhongwei, H. Mingming, and W. Dezhi. 2013. “Research of Hydrogen Generation by the Reaction of Al-Based Materials with Water.” Journal of Power Sources 222: 188–195.Web of ScienceCrossrefGoogle Scholar

  • Yang, Y., G. Wei-Zhuo, D. Zhen-Yan, and Z. Jian-Ge. 2014. “Hydrogen Generation by the Reaction of Al with Water Promoted by an Ultrasonically Prepared Al(OH)3 Suspension.” International Journal of Hydrogen Energy 39: 18734–18742.CrossrefWeb of ScienceGoogle Scholar

  • Yinon, Y., G. Sam, M. Jeffrey, and F. David. 2015. “Comparative Reactivity of Industrial Metal Powders with Water for Hydrogen Production.” International Journal Hydrogen Energy 40: 1026–1036.CrossrefWeb of ScienceGoogle Scholar

  • Zhen-Yan, D., T. Ye-Bin, Z. Li-Li, S. Yoshio, and Y. Jinhua. 2010. “Effect of Different Modification Agents on Hydrogen-Generation by the Reaction of Al with Water.” International Journal of Hydrogen Energy 35: 9561–9568.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2017-12-22

Accepted: 2018-04-22

Revised: 2018-03-23

Published Online: 2018-05-03


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 7, 20170250, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0250.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in