Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Production of NMSBA from NMST Catalyzed by Co/Mn/Br and HPW@C Modified with ZnCl2 Solution

Di Wen
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhou-wen Fang
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heng He
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chao Zhang
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiang-li Long
  • Corresponding author
  • State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-14 | DOI: https://doi.org/10.1515/ijcre-2017-0256

Abstract

2-nitro-4-methylsulfonylbenzoic acid (NMSBA) can be produced by oxidizing 2-nitro-4-methylsulfonyltoluene (NMST) with air catalyzed by Co/Mn/Br and phosphotungstic acid(HPW) loaded on activated carbon. This paper reports that the catalytic ability of the HPW@C catalyst in the oxidation of NMST to NMSBA can be improved by treating the activated carbon with ZnCl2 solution. The best modification condition with ZnCl2 solution is impregnating the carbon sample in 0.1 mol/L solution for 6 h followed by calcination at 600 °C for 4 h. The increase of the surface area and the acidic groups on the carbon surface enhances the catalytic ability of the HPW@C catalyst. The mesopores play an important role in the catalytic oxidation of NMST to NMSBA.

Keywords: 2-nitro-4-methylsulfonylbenzoic acid; 2-nitro-4-methylsulfonyltoluene; activated carbon; ZnCl2; phosphotungstic acid

References

  • Aliyan, H., R. Fazaeli, and N. Habibollahi. 2012. “Aluminium Salt of Phosphomolybdic Acid Fabricated by Nanocasting Strategy: An Efficient System for Selective Oxidation of Benzyl Alcohols.” Journal of the Korean Chemical Society 56 (5): 591–596.CrossrefGoogle Scholar

  • Belyeva, O. V., T. A. Krasnova, and O. S. Gladkova. 2015. “Effect of the Thermal Treatment Conditions of Granulated Active Carbons on Their Properties.” Solid Fuel Chemical 49 (3): 196–200.CrossrefGoogle Scholar

  • Boehm, H. P. 1994. “Some Aspects of the Surface Chemistry of Carbon Blacks and Others Carbons.” Carbon 53 (5): 759–768.Google Scholar

  • Caturla, F., M. Molina-Sabio, and F. Rodriguez-Reinoso. 1991. “Preparation of Activated Carbon by Chemical Activation with ZnCl2.” Carbon 29: 999–1007.CrossrefGoogle Scholar

  • Chang, B. B., Y. Z. Guo, Y. C. Li, and B. C. Yang. 2015. “Hierarchical Porous Carbon Derived from Recycled Waste Filter Paper as High-Performance Supercapacitor Electrodes.” RSC Advances 5: 72019–72027.Web of ScienceCrossrefGoogle Scholar

  • Cheng, J. Y., L. Yang, L. Dong, X. L. Long, and W. K. Yuan. 2012. “Regeneration of hexamminecobalt(II) under the Catalysis of Activated Carbon Modified with ZnCl2 Solution.” Journal of Industrial and Engineering Chemistry 18 (5): 1628–1634.Web of ScienceCrossrefGoogle Scholar

  • Ding, Y. 2013. “Catalytic Oxidation of Benzaldehyde to Benzoic Acid with Keggin Polyoxometalate [(CH2)5NH2]3PW12O40.” Asian Journal of Chemistry 25 (2): 793.CrossrefGoogle Scholar

  • Domingo-García, M., F. J. López Garzón, and M. J. Pérez-Mendoza. 2002. “On the Characterization of Chemical Surface Groups of Carbon Materials.” Journal of Colloid and Interface Science 248 (1): 116–122.CrossrefGoogle Scholar

  • Gregory, J. A., and W. L. Dehany Method for the preparation of 4-methylsulfonyl benzoic acid derivatives and intermediates, US5079381, 1992.

  • Hagen, H. Preparation of methylsulfonylbenzoic acids, US 5424481 A, 1995.Google Scholar

  • He, H., Z. W. Fang, C. Zhang, and X. L. Long. 2018. Oxidation of NMST to NMSBA under the Catalysis of Supported Phosphotungstic Acid and Co/Mn/Br Catalytic System. The Canadian Journal of Chemical Engineering 96: 1264–1272.CrossrefGoogle Scholar

  • Huang, C., R. Liu, C. T. Zhang, Q. P. Cheng, and H. J. Zhu. 2017. “Iron(II) and copper(II) Phthalocyanine-Catalyzed Synthesis of 2-Nitro-4-Methylsulfonylbenzoic Acid under Mild Conditions.” Journal of Chemical Sciences 129 (10): 1587–1594.Web of ScienceCrossrefGoogle Scholar

  • Jacobso, S. E. Process for producing ortho-nitro aromatic acids by oxidization of ortho-nitroalkyl aromatic compounds, US 5591890 A, 1997.Google Scholar

  • Jary, W., P. Pöechlauer, and M. Lassnig. Method for producing optionally substituted benzoic acids, WO2004058698 A1, 2004.Google Scholar

  • Khan, M. A., Y. T. Ahn, M. Kumar, W. Lee, B. Min, G. Kim, D. W. Cho, W. B. Park, and B. H. Jeon. 2011. “Adsorption Studies for the Removal of Nitrate Using Modified Lignite Granular Activated Carbon.” Separation Science and Technology 46: 2575–2584.CrossrefWeb of ScienceGoogle Scholar

  • Legras, P. G. Process, WO 2007099450 A2, 2007.Google Scholar

  • Li, X., F. Yan, and Q. C. Feng A catalytic oxidation method for the preparation of 2-nitro-4- methylsulfonylbenzoic acid by oxygen molecule, CN104557640A, 2015.Google Scholar

  • Long, X. L., Z. H. Wang, S. Q. Wu, S. M. Wu, H. F. Lv, and W. K. Yuan. 2014. “Production of Isophthalic Acid from M-Xylene Oxidation under the Catalysis of the H3PW12O40/carbon and Cobalt Catalytic System.” Journal of Industrial and Engineering Chemistry 20: 100–107.CrossrefWeb of ScienceGoogle Scholar

  • Long, X. L., C. Zhang, Y. Zhu, Z. L. Yang, and W. K. Yuan. 2016. “Production of NMSBA from the Oxidation of NMST with Oxygen Catalyzed by H3PW12O40/Co/Mn/Br Homogeneous Catalytic System.” Chemical Engineering Journal 286: 361–368.Web of ScienceCrossrefGoogle Scholar

  • Ludv, Ik C. N. Preparation of trisubstituted benzoic acid precursors:US, 5055605, 1991.Google Scholar

  • Macdonald, J. A. F., M. J. B. Evans, S. Liang, S. E. Meech, P. R. Norman, and L. Pears. 2000. “Chlorine and Oxygen on the Carbon Surface.” Carbon 38 (13): 1825–1830.CrossrefGoogle Scholar

  • Michaely, W. J., G. W. Kraatz, and S. Jose Certain z-substituted benzyl –1,3-cyclohexanediones and their use as herbicides, US4780127, 1988.Google Scholar

  • Mitchell, G., D. W. Bartlett, T. E. M. Fraser, T. R. Hawkes, D. C. Holt, J. K. Townson, and R. A. Wichert. 2001. “Mesotrione: A New Selective Herbicide for Use in Maize.” Pest Management Science 57 (2): 120–128.CrossrefGoogle Scholar

  • Molina Sabio, M., and F. Rodriguez Reinoso. 2004. “Role of Chemical Activation in the Development of Carbon Porosity.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 241: 15–25.CrossrefGoogle Scholar

  • Nayak, A., B. Bhushan, V. Gupta, and P. Sharma. 2017. “Chemically Activated Carbon from Lignocellulosic Wastes for Heavy Metal Wastewater Remediation: Effect of Activation Conditions.” Journal of Colloid and Interface Science 493: 228–240.Web of ScienceCrossrefGoogle Scholar

  • Pereira, M. F. R., J. J. M. Orfao, and J. L. Figueiredo. 1999. “Oxidative Dehydrogenation of Ethylbenzene on Activated Carbon Catalysts. I. Influence of Surface Chemical Groups.” Applied Catalysis A: General 184: 153–160.CrossrefGoogle Scholar

  • Pérez-Cadenas, A. N., F. J. Maldonado-Hódar, and C. Moreno-Castilla. 2003. “On the Nature of Surface Acid Sites of Chlorinated Activated Carbons.” Carbon 41 (3): 473–478.CrossrefGoogle Scholar

  • Rivera-Utrilla, J., I. Bautista-Toledo, M. A. Ferro-Garcı́a, and C. Moreno-Castilla. 2003. “Bioadsorption of Pb(II), Cd(II) and Cr(VI) on Activated Carbon from Aqueous Solutions.” Carbon 41: 323–330.CrossrefGoogle Scholar

  • She, Y. B., R. Liu, and K. Li Preparation of o-nitro-p-methylsulfonyl benzoic acid from the oxidation of o-nitro-p- methylsulfonyl toluene with metalloporphyrin as catalyst, CN102329256A, 2012.Google Scholar

  • Subha, R., and C. Namasivayam. 2010. “ZnCl2-modified Activated Carbon from Biomass Coir Pith for the Removal of 2-Chlorophenol by Adsorption Process.” Bioremediation Journal 14 (1): 1–9.CrossrefWeb of ScienceGoogle Scholar

  • Uçar, S., M. Erdem, T. Tay, and S. Karagöz. 2009. “Preparation and Characterization of Activated Carbon Produced from Pomegranate Seeds by ZnCl2 Activation.” Applied Surface Science 255 (21): 8890–8896.Web of ScienceCrossrefGoogle Scholar

  • Wang, Z. H., Z. L. Yang, S. M. Wu, and X. L. Long. 2015. “A Study on the Production of Isophthalic Acid from M-Xylene under the Catalysis of Cobalt and H3PW12O40/carbon Modified by HNO3 Solution.” International Journal of Chemical Reactor Engineering 13 (3): 413–425.Web of ScienceGoogle Scholar

  • Wehrenberg, P. K. Method for preparation of herbicide intermediates, US 5648525 A, 1997.Google Scholar

  • Yin, C. Y., M. K. Aroua, and W. M. A. W. Daud. 2007. “Review of Modifications of Activated Carbon for Enhancing Contaminant Uptakes from Aqueous Solutions.” Separation and Purification Technology 52: 403–415.Web of ScienceCrossrefGoogle Scholar

  • Zhu, H. J., and C. Huang A method for the preparation of 2-nitro-4- methylsulfonylbenzoic acid from the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene, CN104844484A, 2015.Google Scholar

  • Zielke, U., K. J. Hüttinger, and W. P. Hoffman. 1996. “Surface-Oxidized Carbon Fibers: I. Surface Structure and Chemistry.” Carbon 34 (8): 983–998.CrossrefGoogle Scholar

About the article

Received: 2017-12-28

Accepted: 2018-06-05

Revised: 2018-02-08

Published Online: 2018-06-14


Citation Information: International Journal of Chemical Reactor Engineering, 20170256, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0256.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in