Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 16, Issue 11


Volume 17 (2019)

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Experimental and Kinetic Production of Ethanol Using Mucilage Juice Residues from Cocoa Processing

Teresa Romero Cortes
  • Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Km.8., Chimalpa Tlalayote s/n, 43900, Colonia Chimalpa, Apan, Hidalgo, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaime A. Cuervo-Parra
  • Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Km.8., Chimalpa Tlalayote s/n, 43900, Colonia Chimalpa, Apan, Hidalgo, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Víctor José Robles-Olvera
  • Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Av. M.A. de Quevedo No. 2779, Col. Formando Hogar C.P. 91897, Veracruz, Ver
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduardo Rangel Cortes
  • Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Km.8., Chimalpa Tlalayote s/n, 43900, Colonia Chimalpa, Apan, Hidalgo, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pablo A. López Pérez
  • Corresponding author
  • Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Km.8., Chimalpa Tlalayote s/n, 43900, Colonia Chimalpa, Apan, Hidalgo, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-10 | DOI: https://doi.org/10.1515/ijcre-2017-0262


Ethanol was produced using mucilage juice residues from processed cocoa with Pichia kudriavzevii in batch fermentation. Experimental results showed that maximum ethanol concentration was 13.8 g/L, ethanol yield was 0.50 g-ethanol/g glucose with a productivity of 0.25 g/L h. Likewise, a novel phenomenological model based on the mechanism of multiple parallel coupled reactions was used to describe the kinetics of substrate, enzyme, biomass and product formation. Model parameters were optimized by applying the Levenberg-Marquardt approach. Analysis of results was based on statistical metrics (such as confidence interval), sensitivity and by comparing calculated curves with the experimental data (residual plots). The efficacy of the proposed mathematical model was statistically evaluated using the dimensionless coefficient for efficiency. Results indicated that the proposed model can be applied as a way of augmenting bioethanol production from laboratory scale up to semi-pilot scale.

Keywords: batch fermentation; Pichia kudriavzevii; bioethanol; multiple reactions


  • Abliz, D., T. Artys, and G. Ziegmann. 2017. “Influence of Model Parameter Estimation Methods and Regression Algorithms on Curing Kinetics and Rheological Modelling.” Journal of Applied Polymer Science 134: 45137.CrossrefGoogle Scholar

  • Andrade, R.R., E.C. Rivera, D.I.P. Atala, R. Maciel Filho, F. Maugeri Filho, and A.C. Costa. 2009. “Study of Kinetic Parameters in a Mechanistic Model for Bioethanol Production through a Screening Technique and Optimization.” Bioprocess and Biosystems Engineering 32: 673–680.CrossrefGoogle Scholar

  • Angeli, D., P.E. De Leenheer, and D. Sontag. 2007. “A Petri Net Approach to the Study of Persistence in Chemical Reaction Networks.” Mathematical Biosciences 210: 598–618.CrossrefGoogle Scholar

  • Anvoh, K.Y.B., A.B. Zoro, and D. Gnakri. 2009. “Production and Characterization of Juice from Mucilage of Cocoa Beans and its Transformation into Marmalade.” Pakistan Journal of Nutrition 8: 129–133.CrossrefGoogle Scholar

  • Benítez-Olivares, G., F. Valdés-Parada, and J. Saucedo-Castañeda. 2016. “Derivation of an Upscaled Model for Mass Transfer and Reaction for Non-Food Starch Conversion to Bioethanol.” International Journal of Chemical Reactor Engineering 14 (6): 1115–1148.Google Scholar

  • Bineli, A., J. Thibault, A. Jardini, and M. Filho. 2013. “Ethanol Steam Reforming for Hydrogen Production in Microchannel Reactors: Experimental Design and Optimization.” International Journal of Chemical Reactor Engineering 11 (1): 9–17.Google Scholar

  • Biscaro Pedrolli, D, A. Costa Monteiro, E. Gomes, and E. Cano Carmona. 2009. “Pectin and Pectinases: Production, Characterization and Industrial Application of Microbial Pectinolytic Enzymes.” The Open Biotechnology Journal 3: 9–18.CrossrefGoogle Scholar

  • Blanco, P., C. Sieiro, and T.G. Villa. 1999. “Production of Pectic Enzymes in Yeasts.” FEMS Microbiology Letters 175: 1–9.CrossrefGoogle Scholar

  • Blinov, M.L., J. Yang, J.R. Faeder, and W. Hlavacek. 2005. “Graph Theory for Rule-Based Modeling of Biochemical Networks.” Transactions on Computational Systems Biology VII: Lecture Notes in Computer Science 4230: 89–106.Google Scholar

  • Bradford, M. M. 1976. “A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principles of protein-dye binding.” Analytical Biochemistry 72: 248–254.CrossrefGoogle Scholar

  • Brauner, N., and M. Shacham. 2013. “The Role of the Confidence Intervals in Parameter Estimation and Model Refinement for Dynamical Systems.” Proceedings AIChE P307592.Google Scholar

  • Bruckner, T., I.A. Bashmakov, Y. Mulugetta, H. Chum, A. de la Vega Navarro, J. Edmonds, A. Faaij, et al. 2014. “Energy Systems.” In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar

  • Buehler, E.A., and A. Mesbah. 2016. “Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture.” PLoS ONE 11 (8): e0158243.Google Scholar

  • Cardona, C.A., and O.J. Sanchez. 2007. “Fuel Ethanol Production: Process Design Trends and Integration Opportunities.” Bioresource Technology 98: 2415–2457.CrossrefGoogle Scholar

  • Chen, Y., and F. Wang. 2012. “Determination of Kinetic Parameters for Enzymatic Ellulose Hydrolysis Using Hybrid Differential Evolution.” International Journal of Chemical Reactor Engineering 9 (1). Accessed on 4 Jul. 2018, doi:10.2202/1542-6580.2498.Google Scholar

  • De Melo, P.GV., P.M.M.G. Da Cruz, R.C. Lacerda, and R.F. Schwan. 2012. “Microbiological and Physicochemical Characterization of Small-Scale Cocoa Fermentations and Screening of Yeast and Bacterial Strains to Develop a Defined Starter Culture.” Applied and Environmental Microbiology 78 (15): 5395–5405.CrossrefGoogle Scholar

  • de Oliveira, L.P., D. Hudebine, D. Guillaume, and J.J. Verstraete. 2016. “A Review of Kinetic Modeling Methodologies for Complex Processes.” Oil & Gas Science and Technology 71: 45.CrossrefGoogle Scholar

  • Dochain, D. 2003. “State and parameter estimation in chemical and biochemical processes: a tutorial.” Journal of process control 13(8): 801–818.CrossrefGoogle Scholar

  • Duarte, J., V. Lourenço, B. Ribeiro, C. Saagua, J. Pereira, and L. Baeta-Hall. 2009. “Ethanol Production from Different Substrates by a Flocculent Saccharomyces Cerevisiae Strain.” International Journal of Chemical Reactor Engineering 7 (1). Accessed on 4 Jul. 2018, doi:.CrossrefGoogle Scholar

  • Ernst, W. R. 1989. “Determination of Initial Reaction Rates Using Wilkinson’s Relation.” International Journal of Chemical Kinetics 21: 1153–1160.CrossrefGoogle Scholar

  • Fan, L.T., and Y.H. Lee. 1983. “Kinetic Studies of Enzymatic Hydrolysis of Insoluble Cellulose: Derivation of a Mechanistic Kinetic Model.” Biotechnology and Bioengineering 25 (11): 2707–2733.CrossrefGoogle Scholar

  • Fiedurek, J., J. Szczodrak, and J. Rogalski. 1995. “Seeds as Natural Matrices for Immobilization of Aspergillus Niger Mycelium Producing Pectinases.” Journal of Applied Bacteriology 78 (4): 409–412.CrossrefGoogle Scholar

  • Gajula, C., A. Chandel, R. Konakalla, R. Rudravaram, R. Pogaku, and N. Mangamoori. 2011. “Fermentation of Groundnut Shell Enzymatic Hydrolysate for Fuel Ethanol Production by Free and Sorghum Stalks Immobilized Cells of Pichia Stipitis NCIM 3498.” International Journal of Chemical Reactor Engineering 9 (1). Accessed on 4 Jul. 2018, doi:10.1515/1542-6580.2514.Google Scholar

  • Garg, G., A. Singh, A. Kaur, R. Singh, J. Kaur, and R. Mahajan. 2016. “Microbial Pectinases: An Ecofriendly Tool of Nature for Industries.” 3 Biotech 6 (1): 47.Google Scholar

  • Ibrahim, M.A., A. Al-Thukair, A.R. Shaikh, W. Farooq, and Irshad Ahmad. 2017. “Isolation of Indigenous Microalgae: Nitrogen/Phosphorous Removal and Biofuel Production.” Biofuels 0: 1–8.Google Scholar

  • Jayathilakan, K., K. Sultana, K. Radhakrishna, and A.S. Bawa. 2012. “Utilization of Byproducts and Waste Materials from Meat, Poultry and Fish Processing Industries: A Review.” Journal of Food Science and Technology 49 (3): 278–293.CrossrefGoogle Scholar

  • Jespersen, L., D.S. Nielsen, S. Hønholt, and M. Jakobsen. 2005. “Occurrence and Diversity of Yeasts Involved in Fermentation of West African Cocoa Beans.” FEMS Yeast Research 5: 441–453.CrossrefGoogle Scholar

  • Kostov, G., D. Pircheva, V. Naydenova, V. Iliev, V. Lubenova, and M. Ignatova. 2013. “Kinetics Investigation of Bio-Ethanol Production with Free and Immobilized Cells.” Comptes Rendus De l’Académie Bulgare Des Sciences: Sciences Mathématiques Et Naturelles 66, no. 10 (October): 1463–1472.Google Scholar

  • Kroumov, A.D., A.N. Modenes, and M.C. Tait. 2006. “Development of New Unstructured Model for Simultaneous Saccharification and Fermentation of Starch to Ethanol by Recombinant Strain.” Biochemical Engineering Journal 28: 243–255.CrossrefGoogle Scholar

  • Legates, D.R., and G.J. McCabe Jr. 1999. “Evaluating the Use of “Goodness-Of-Fit” Measures in Hydrologic and Hydroclimatic Model Validation.” Water Research 35 (1): 233–241.CrossrefGoogle Scholar

  • López-Pérez, P.A., R. Maya-Yescas, V. Peña-Caballero, R.V. Gomez-Acata, and R. Aguilar-López. 2013. “Software Sensors Design for a Model of a Simultaneous Saccharification and Fermentation of Starch to Ethanol.” Fuel 110: 219–226.CrossrefGoogle Scholar

  • Lopez-Perez, P.A., M.I. Neria-Gonzalez, L.B. Flores-Cotera, and R. Aguilar-Lopez. 2013. “A Mathematical Model for Cadmium Removal Using A Sulfate Reducing Educing Bacterium: Desulfovibrio Alaskensis 6SR.” International Journal of Environmental Research 7: 501–512.Google Scholar

  • López-Pérez, P.A., H. Puebla, H. I. Velázquez Sánchez, and R. Aguilar-López. 2016. “Comparison Tools for Parametric Identification of Kinetic Model for Ethanol Production Using Evolutionary Optimization Approach.” International Journal of Chemical Reactor Engineering 14 (6).Google Scholar

  • Lyubenova, V. 2017. “Monitoring the Kinetics of Bioprocess Variables – Theory and Applications.” Information Technologies and Control 14 (1): 2–12.Google Scholar

  • Masoud, W., and Jespersen, L. 2006. “Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa.” International Journal of Food Microbiology 110: 291–296.CrossrefGoogle Scholar

  • Mendoza-Chávez, E., N. Rodríguez-Olalde, R. Maya-Yescas, J. Campos-García, J. Saucedo-Luna, and A.J. Castro-Montoya. 2016. “Thermodynamic Analysis of Ethanol Synthesis from Glycerol by Two-Step Reactor Sequence.” International Journal of Chemical Reactor Engineering 14 (6): 1169–1176.Google Scholar

  • Miller, G.L. 1959. "Use of dinitrosalicylic acid reagent for determination of reducing sugar." Analytical Chemistry 31(3): 426–428.CrossrefGoogle Scholar

  • Moreira, I.M., M.G. Miguel, W.F. Duarte, D.R. Dias, and R.F. Schwan. 2013. “Microbial Succession and the Dynamics of Metabolites and Sugars during the Fermentation of Three Different Cocoa (Theobroma Cacao L.) Hybrids.” Food Research International 54 (1): 9–17.CrossrefGoogle Scholar

  • Mushimiyimana, I., and P. Tallapragada. 2016. “Bioethanol Production from Agro Wastes by Acid Hydrolysis and Fermentation Process.” Journal of Scientific & Industrial Research 75: 383–388.Google Scholar

  • Nag, A., M. Lunacek, P.A. Graf, and C.H. Chang. 2011. “Kinetic Modeling and Exploratory Numerical Simulation of Chloroplastic Starch Degradation.” BMC Systems Biology 5 (1): 94.CrossrefGoogle Scholar

  • Nielsen, D.S., O.D. Teniola, L Ban-Koffi, M. Owusu, T.S Anderson, and W.H. Holzapfel. 2007. “The Microbiology of Ghanaian Cocoa Fermentations Analyzed Using Culture-Dependent and Culture-Independent Methods.” International Journal of Food Microbiology 114: 168–186.CrossrefGoogle Scholar

  • Niture, K.S. 2008. “Comparative Biochemical and Structural Characterizations of Fungal Polygalacturonases.” Biologia 63 (1): 1–19.CrossrefGoogle Scholar

  • Pavlecic, M., I. Vrana, K. Vibovec, P. Horvat, and B. Santek. 2010. “Ethanol Production from Different Intermediates of Sugar Beet Processing.” Food Technology and Biotechnology 48: 362–367.Google Scholar

  • Pereira, B.F., A. Romaní, A.H. Ruiz, J.A. Teixeira, and L. Dominguez. 2014. “Industrial Robust Yeast Isolates with Great Potencial for Ferementation of Lignocellulosic Biomass.” Bioresource Technology 161: 192–199.CrossrefGoogle Scholar

  • Ramakrishnan, S., G. Brodeur, and J. Telotte. 2017. “Analysis of the Long Time Behavior of Enzymatic Cellulose Hydrolysis Kinetics.” International Journal of Chemical Reactor Engineering. Accessed 4 Jul. 2018, doi:10.1515/ijcre-2017-0087.Google Scholar

  • Ramos, C.L., W.F. Duarte, A.L. Freire, D.R. Dias, E.C.A Eleutherio, and R. Schwan. 2013. “Evaluation of Stress Tolerance and Fermentative Behavior of Indigenous Saccharomyces Cerevisiae.” Brazilian Journal of Microbiology 44: 935–944.CrossrefGoogle Scholar

  • Ribeiro, L.A., P.P. Silva, T.M. Mata, and A.A. Martins. 2015. “Prospects of Using Microalgae for Biofuels Production: Results of a Delphi Study.” Renewable Energy 75: 799–804.CrossrefGoogle Scholar

  • Rivera, E.C., S.C. Rabelo, D.R. Garcia, R. Maciel Filho, and A.C. Costa. 2010. “Enzymatic Hydrolysis of Sugarcane Bagasse for Bioethanol Production: Determining Optimal Enzyme Loading Using Neural Networks.” Journal of Chemical Technology & Biotechnology 85: 983–992.CrossrefGoogle Scholar

  • Samagaci, L., H.G. Ouattara, B.G. Goualié, and S.L. Niamke. 2015. “Polyphasic Analysis of Pectinolytic and Stress-Resistant Yeast Strains Isolated from Ivorian Cocoa Fermentation.” Journal of Food Research 4: 124–134.Google Scholar

  • Schwan, R.F., R.M. Cooper, and A.E. Wheals. 1997. “Endopolygalacturonase Secretion by Kluyveromyces Marxianusand Other Cocoa Pulp-Degrading Yeasts.” Enzyme and Microbial Technology 21: 234–244.CrossrefGoogle Scholar

  • Schwan, R.F. 1998. “Cocoa fermentations conducted with a defined microbial cocktail inoculum.” Applied and Environmental Microbiology 64: 1477– 1483.Google Scholar

  • Schwan, R.F., and A.E. Wheals. 2004. “The Microbiology of Cocoa Fermentation and Its Role in Chocolate Quality.” Critical Reviews in Food Science and Nutrition 44: 1–17.Google Scholar

  • Shen, Y., J. Guo, Y. Chen, H. Zhang, X. Zheng, Y. Jiang, X. Zhang, and -X. Li. 2012. “Effects of Glucose Releasing Rate on Cell Growth and Performance of Simultaneous Saccharification and Fermentation (SSF) in Sweet Potato Medium for Fuel Ethanol Production Using Saccharomyces Cerevisiae.” International Journal of Chemical Reactor Engineering 10 (1). Accessed on 4 Jul. 2018, doi:10.1515/1542-6580.2976.Google Scholar

  • Singh, S., I. Chakravarty, and S. Kundu. 2017. “Mathematical Modelling of Bioethanol Production from Algal Starch Hydrolysate by Saccharomyces Cerevisiae.” Cellular and Molecular Biology 63 (6): 83–87.CrossrefGoogle Scholar

  • Souto, L.R.F., M. Caliari, M.S. Soares, F. A. Fiorda, and M.C. Garcia. 2017. “Utilization of Residue from Cassava Starch Processing for Production of Fermentable Sugar by Enzymatic Hydrolysis.” Journal of Food Science and Technology 37 (1): 19–24.Google Scholar

  • Srimachai, T., K. Nuithitikul, S. O-Thon, p Kongjan, and K Panponh. 2015. “Optimization and Kinetic Modeling of Ethanol Production from Oil Palm Frond Juice in Batch Fermentation.” Energy Procedia 79: 111–118.CrossrefGoogle Scholar

  • Suresh, S., N. Khan, V. Srivastava, and I.M. Mishra. 2009. “Kinetic Modeling and Sensitivity Analysis of Kinetic Parameters for L-Glutamic Acid Production Using Corynebacterium Glutamicum.” International Journal of Chemical Reactor Engineering 7 (1). Accessed on 4 Jul. 2018, doi:10.2202/1542-6580.2038.Google Scholar

  • Takrama, J. F., W. O. Kumi, G. Otoo, K. Addo, and N. Camu. 2015. “Optimization of Cocoa Pulp Juice Fermentation with YeastStarter Cultures of Cocoa Heap. Fermentations.” Journal of Agricultural Science and Food Technology 1 (3): 22–33.Google Scholar

  • Tivkaa, A., and A. Bukola. 2012. “Screening of New Isolates Fungal Strains for Polygalacturonase Production in Submerged Fermentation.” Innovative Romanian Food Biotechnology 11: 15–22.Google Scholar

  • Tiwari, A., A. Keshav, and S. Bhowmick. 2017. “Optimization of Esterification of Propionic Acid with Ethanol Catalyzed by Solid Acid Catalysts Using Response Surface Methodology (RSM): A Kinetic Approach.” International Journal of Chemical Reactor Engineering 15 (4). Accessed on 4 Jul. 2018, doi:10.1515/ijcre-2016-0101.Google Scholar

  • Vallance, C. 2017, January. An Introduction to Chemical Kinetics, vol. 135. Morgan & Claypool Publishers.Google Scholar

  • Vallance, C., R.G.A.R. Maclagan, and L.F. Phillips. 1996. “Numerical Study of the Reaction of CN with O2.” Chemical Physics Letters 250 (1): 59–65.CrossrefGoogle Scholar

  • Watt, S., H. Sidhu, M. Nelson, and K. Ray. 2010. “Analysis of a Model for Ethanol Production through Continuous Fermentation: Ethanol Productivity.” International Journal of Chemical Reactor Engineering 8 (1): 1–17.Google Scholar

  • World Energy Council. 2016. World Energy Resources | 2016. WECouncil. Resources 2016 Summary. 1028.Google Scholar

  • Wu, X., S. Staggenborg, J.L. Propheter, W.L. Rooney, J. Yu, and D. Wang. 2010. “Features of Sweet Sorghum Juice and Their Performance in Ethanol Fermentation.” Industrial Crops and Products 31: 164–170.CrossrefGoogle Scholar

About the article

Received: 2017-12-30

Accepted: 2018-06-23

Revised: 2018-06-04

Published Online: 2018-07-10

Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 11, 20170262, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0262.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in