Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Ahead of print

Issues

Volume 17 (2019)

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Trimetallic RuxMoNi Catalysts Supported on SBA-15 for the Hydrodesulfurization of Dibenzothiophene

N.L. Torres-García
  • Corresponding author
  • Universidad Michoacana de San Nicolás de Hidalgo , Facultad de Ingeniería Química , 58060 Morelia , México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Huirache-Acuña
  • Corresponding author
  • Universidad Michoacana de San Nicolás de Hidalgo , Facultad de Ingeniería Química , 58060 Morelia , México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T.A. Zepeda-Partida
  • Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, km. 107 Carretera Tijuana-Ensenada. 22800 Ensenada, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B. Pawelec
  • Consejo Superior de investigaciones Científica, Instituto de Catálisis de Petroleoquímica, c/Marie Curie 2, L, 10, Cantoblanco, 28049, Madrid, España
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J.L.G. Fierro
  • Consejo Superior de investigaciones Científica, Instituto de Catálisis de Petroleoquímica, c/Marie Curie 2, L, 10, Cantoblanco, 28049, Madrid, España
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P.J. Vázquez-Salas
  • Universidad Michoacana de San Nicolás de Hidalgo , Facultad de Ingeniería Química , 58060 Morelia , México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Maya-Yescas
  • Universidad Michoacana de San Nicolás de Hidalgo , Facultad de Ingeniería Química , 58060 Morelia , México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J.M. Rivera-Garnica
  • Universidad Michoacana de San Nicolás de Hidalgo , Facultad de Ingeniería Química , 58060 Morelia , México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-10 | DOI: https://doi.org/10.1515/ijcre-2017-0264

Abstract

In this work, novel trimetallic catalysts based on transition metal sulphides (Ru, Mo and Ni) supported on SBA-15 were synthesized. Citric acid (CA) was used as chelating agent in order to enhance the dispersion of the active phase and minimize the metal-support interaction. Sulfided catalysts were evaluated in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT) at 320 °C and 54.5 atm of total H2 pressure. The effects of different Ru/(Ni + Mo) atomic ratios on the active phase were studied. The catalysts were characterized using Micro-Raman spectroscopy, DRIFTS, XRD, XPS, HR-TEM and SEM techniques. Results have shown that there was a better dispersion of the metallic phases, which improves the physicochemical properties of the catalysts, increasing the catalytic activity. The trimetallic RuxMoNi catalyst with the lowest atomic ratio, have shown superior catalytic activity compared to their higher atomic ratio counterparts. The interaction of the chelating agent improved the catalytic activity, which was superior to that observed for NiMo based catalysts, considered one of the most active hydrotreating catalysts.

Keywords: chelating agent; hydrodesulfurization; mesoporous SBA-15; metal sulfide; ruthenium

References

  • Bergwerff, J.A., M. Jansen, B.R.G. Leliveld, T. Visser, K.P. De Jong, and B.M. Weckhuysen. 2006. “Influence of the Preparation Method on the Hydrotreating Activity of MoS2/Al2O3 Extrudates: A Raman Microspectroscopy Study on the Genesis of the Active Phase.” Journal of Catalysis 243: 292–302.CrossrefGoogle Scholar

  • Chianelli, R.R., G. Berhault, and B. Torres. 2009. “Unsupported Transition Metal Sulfide Catalysts: 100 Years of Science and Application.” Catalysis Today 147: 275–286.CrossrefWeb of ScienceGoogle Scholar

  • De Los Reyes, J.A. 2007. “Ruthenium Sulfide Supported on Alumina as Hydrotreating Catalyst.” Applied Catalysis A: General 322: 106–112.CrossrefWeb of ScienceGoogle Scholar

  • Funamoto, T., and K. Segawa. 2007. "11th Korea–Japan Symp. Catal." Seoul, Preprint. GO-37.Google Scholar

  • García-Martínez, J.C., A. Dutta, G. Chávez, J.A. De Los Reyes, and C.O Castillo-Araiza. 2016. “Hydrodesulfurization of Dibenzothiophene in a Micho Trickle Bed Catalytic Reactor under Operating Conditions from Reactive Distillation.” Journal of Chemical Reactor Engineering 14 (3): 769–783.Google Scholar

  • Geantet, C., J.A. De Los Reyes, M. Cattenot, M. Vrinat, M. Breysse, and S. Gőbölös. 1991. “Ruthenium molybdenum sulphide catalysts: physicochemical characterization and catalytic properties in HDS, hydrogenation and HDN reactions.” Catalysis Today 10 (4): 665–680.CrossrefGoogle Scholar

  • Gómez-Orozco, S.Y., R. Huirache-Acuña, B. Pawelec, J.L.G. Fierro, E.M. Rivera-Muñoz, J. Lara-Romero, and G. Alonso-Nuñez. 2018. “Characterizations and HDS Performances of Sulfided NiMoW Catalysts Supported on Mesoporous Titania-Modified SBA-15.” Catalysis Today 305: 152–161.CrossrefWeb of ScienceGoogle Scholar

  • Heise, W.H., K. Lu, Y.J. Kuo, T.J. Udovic, J.J. Rush, and B.J. Tatarchuk. 1988. “Neutron Scattering Study of Hydrogen on Ruthenium Sulfide.” Journal of Physics Chemistry 92 (18): 5184–5188.CrossrefGoogle Scholar

  • Hodoshima, S., H. Nagata, and Y. Saito. 2005. “Efficient Hydrogen Supply from Tetralin with Superheated Liquid-Film-Type Catalysis for Operating Fuel Cells.” Applied Catalysis A: General 292: 90–96.CrossrefGoogle Scholar

  • Houalla, M., NK. Nag, A.V. Sapre, D.H. Broderick, and B.C. Gates. 1978. “Hydrodesulfurization of Dibenzothiophene Catalyzed by Sulfided CoO-MoO3/γ-Al2O3: The Reaction Network.” AIChEJ 24 (6): 1015–1021.CrossrefGoogle Scholar

  • Huirache-Acuña, R., B. Pawelec, E. Rivera-Muñoz, R. Nava, J. Espino, and J.L.G. Fierro. 2009. “Comparison of the Morphology and HDS Activity of Ternary Co-Mo-W Catalysts Supported on P-Modified SBA-15 and SBA-16 Substrates.” Applied Catalysis B: Environmental 92 (2): 168–184.CrossrefWeb of ScienceGoogle Scholar

  • Klimov, O.V., A.V. Pashigreva, M.A. Fedotov, D.I. Kochubey, Y.A. Chesalov, G.A. Bukhtiyarova, and A.S. Noskov. 2010. “Co-Mo Catalysts for Ultra-Deep HDS of Diesel Fuels Prepared via Synthesis of Bimetallic Surface Compounds.” Catalysis A: Chemical 322: 80–89.CrossrefWeb of ScienceGoogle Scholar

  • Kuo, Y.J., and B.J. Tatarchuk. 1988. “Hydrogenation and Hydrodesulfurization over Sulfided Ruthenium Catalysts: II. Impact of Surface Phase Behavior on Activity and Selectivity.” Journal of Catalysis 112 (1): 250–266.CrossrefGoogle Scholar

  • Li, H., Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat. 2012. “From Bulk to Monolayer MoS2: Evolution of Raman Scattering.” Advancement Function Materials 22: 1385–1390.CrossrefGoogle Scholar

  • Lin, S.S., and Y.S. Huang. 1989. “Raman Investigation of Of RuS2.” Solid State Communications 69: 589–593.CrossrefGoogle Scholar

  • Ying Liu, Fei Liu, Rijie Wang, and Xiaoxia Yang. 2018 (1) 18. “The Removal of Benzothiophene from Model Diesel on NaY and NiY Zeolites: Equilibrium and Kinetic Studies.” International Journal of Chemical Reactor Engineering 16 (5):. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Massoth, F.E., G. Muralidhar, et al. 1982. “Chemistry and uses of molybdenum : proceedings of the fourth International Conference,” in Proceedings, Climax Fourth International Conference on the Chemistry and Uses of Molybdenum, edited by H.F. Barry, P.C.H. Mitchell, et al.,, 343. Ann Arbor, Michigan: Climax Molybdenum Company .Google Scholar

  • Olivas, A., D.H. Galván, G. Alonso, and S. Fuentes. 2009. “Trimetallic NiMoW Unsupported Catalysts for HDS.” Applied Catalysis A: General 352: 10–16.CrossrefWeb of ScienceGoogle Scholar

  • Paradisanos, I., E. Kymakis, C. Fotakis, G. Kioseoglou, and E. Stratakis. 2014. “Intense Femtosecond Photoexcitation of Bulk and Monolayer MoS2.” Applied Physics Letters 105: 041108.Web of ScienceCrossrefGoogle Scholar

  • Matin Parvari, Peyman Moradi, et al. 2011 (1) 8. “The Influence of Boria and EDTA on the Hydrodesulfurization Activity on CoMoS Supported Catalysts.” International Journal of Chemical Reactor Engineering 9 (1):. DOI: .CrossrefGoogle Scholar

  • Pawelec, B., R.M. Navarro, P. Castaño, M.C. Álvarez-Galván, and J.L.G. Fierro. 2009. “Role of the Ru and Support in Sulfided RuNiMo Catalysts in Simultaneous Hydrodearomatization (HDA), Hydrodesulfurization (HDS), and Hydrodenitrogenation (HDN) Reactions.” Energy & Fuels 23: 1364–1372.Web of ScienceCrossrefGoogle Scholar

  • Rinaldi, N., Al-Dalama K. Usman, T. Kubota, and Y. Okamoto. 2009. “Preparation of Co–Mo/B2O3/Al2O3 Catalysts for Hydrodesulfurization: Effect of Citric Acid Addition.” Applied Catalysis A: General 360: 130–136.Web of ScienceCrossrefGoogle Scholar

  • Guillermina Ríos-Caloch, Víctor Santes, José Escobar, Maiby Valle-Orta, María C. Barrera, Melissa Hernández-Barrera, et al. 2012 (1) 20. “Effect of Chitosan Addition on NiMo/Al2O3 Catalysts for Dibenzothiophene Hydrodesulfurization.” International Journal of Chemical Reactor Engineering 10 (1):. DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Riquetto, B.A., J.M. Bueno, L. Petrov, and C.M. Marques. 2003. “An Infrared Study of CO Adsorption on Silica-Supported Ru-Sn Catalysts.” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 59: 2141–2150.CrossrefGoogle Scholar

  • Shen, J.Y., and S. Kaliaguine. 1993. “Infrared Study of CO Adsorbed Species on Ru/Silialite Catalyst.” Research on Chemical Intermediates 19: 407–418.CrossrefGoogle Scholar

  • Soled, S.L., S.Miseo, R.Krikak, H.Vroman, T.H.Ho, and K.L.Riley. 1999. “Nickel Molybden Tungstate Hydrotreating Catalysts”, US patent No. 6, 299, 760 B1.Google Scholar

  • Sun, M., D. Nicosia, and R. Prins. 2003. “The Effects of Fluorine, Phosphate and Chelating Agents on Hydrotreating Catalysts and Catalysis.” Catalysis Today 86: 173–189.CrossrefGoogle Scholar

  • Tan, A., and S. Harris. 1998. “Electronic Structure of Rh2S3 and RuS2, Two Very Active Hydrodesulfurization Catalysts.” Inorganic Chemistry 37 (9): 2215–2222.CrossrefGoogle Scholar

  • Valencia, D., and T. Klimova. 2012. “Kinetic Study of NiMo/SBA-15 Catalysts Prepared with Citric Acid in the Hydrodesulfurization of Dibenzothiophene.” Catalysis Communicable 21: 77–81.CrossrefGoogle Scholar

  • Wagner, C.D., W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg. 1979. Handbook of X-Ray Photoelectron Spectroscopy, USA: Perkin-Elmer CorpGoogle Scholar

  • Zhao, D., J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky. 1998. “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores.” Science 279: 548–552.CrossrefGoogle Scholar

About the article

Received: 2017-12-31

Accepted: 2018-05-13

Revised: 2018-04-20

Published Online: 2018-07-10


Citation Information: International Journal of Chemical Reactor Engineering, 20170264, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2017-0264.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in