Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Volume 16, Issue 8


Volume 17 (2019)

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Scrutinization of Chemical Reaction Effect on Flow and Mass Transfer of Prandtl Liquid over a Riga Plate in the Presence of Solutal Slip Effect

B.J. Gireesha
  • Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shimoga, Karnataka 577 451, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Ganesh Kumar
  • Corresponding author
  • Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shimoga, Karnataka 577 451, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B.C. Prasannakumar
Published Online: 2018-07-10 | DOI: https://doi.org/10.1515/ijcre-2018-0009


In the present paper focused on flow and mass transfer of Prandtl fluid over a Riga plate. The effects of chemical reaction and solutal slip are taken into the account. The governing partial differential equations are reduced into a set of coupled non linear ordinary differential equations using suitable similarity transformations. These equations are then solved using Runge-Kutta-Fehlberg-45 method. Behaviour of emerging parameters are presented graphically and discussed for velocity and concentration distribution. Numerical values of reduced skin friction coefficient and Sherwood number are shown in table and are discussed. From the plotted results it can be observed that the solutal boundary layer thickness decreases for larger values of chemical reaction parameter and Schmidt number. Also, momentum boundary layer thickness rise with stronger modified Hartman number.

Keywords: chemical reaction; mass transfer; Prandtl fluid; Riga plate; solutal slip


  • Abbas, T., M. Ayub, M.M. Bhatti, M.M. Rashidi, and M. Ali. 2016. “Entropy Generation on Nanofluid Flow through a Horizontal Riga Plate.” Entropy 18 (6): 223.CrossrefWeb of ScienceGoogle Scholar

  • Ahmad, A., S. Asghar, and S. Afzal. 2016. “Flow of Nanofluid Pasta Riga Plate.” Journal of Magnetism and Magnetic Materials 402: 44–48.CrossrefGoogle Scholar

  • Datta, N., and S.K. Mishra. 1982. “Boundary Layer Flow of a Dusty Fluid over a Semi-Infinite Flat Plate.” Acta Mechanisms 42: 71–83.CrossrefGoogle Scholar

  • Gailitis, A., and O. Lielausis. 1961. “On a Possibility to Reduce the Hydrodynamic Resistance of Plate in an Electrolyte.” Applications Magnetohydrodyn 12: 143–146.Google Scholar

  • Ganesh Kumar, K., B.J. Gireesha, B.C. Prasannakumara, and O.D. Makinde. 2017. “Impact of Chemical Reaction on Marangoni Boundary Layer Flow of a Casson Nano Liquid in the Presence of Uniform Heat Source Sink.” Diffusion Foundations 11: 22–32.CrossrefGoogle Scholar

  • Gnaneswara Reddy, M., M. V. V. N. L. Sudha Rani, K. Ganesh Kumar, and B. C. Prasannakumara. 2018. “Cattaneo–Christov Heat Flux and Non-Uniform Heat-Source/Sink Impacts on Radiative Oldroyd-B Two-Phase Flow across a Cone/Wedge.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 40: 95.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., T. Abbas, M. Ayuba, M. Farooq, and A. Alsaedi. 2016a. “Flow of Nanofluid Due to Convectively Heated Riga Plate with Variable Thickness.” Journal of Molecular Liquids 222: 854–862.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., M. Khan, M. Imtiaz, and A. Alsaedi. 2017a. “Squeezing Flow past a Riga Plate with Chemical Reaction and Convective Conditions.” Journal of Molecular Liquids 225: 569–576.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. Ijaz Khan, M. Farooq, A. Alsaedi, M. Waqas, and Tabassam Yasmeen. 2016b. “Impact of Cattaneo–Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid over a Variable Thicked Surface.” International Journal of Heat and Mass Transfer 99: 702–710.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., Muhammad Ijaz Khan, Sumaira Qayyum, and Ahmed Alsaedi. 2018a. “Entropy Generation in Flow with Silver and Copper Nanoparticles.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 539: 335–346.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., Taseer Muhammad, Sabir Ali Shehzad, Ahmed Alsaedi, and Falleh Al-Solamy. 2016c. “Radiative Three-Dimensional Flow with Chemical Reaction.” International Journal of Chemical Reactor Engineering 14 (1): 79–91.Web of ScienceGoogle Scholar

  • Hayat, T, S Qayyum, SA Shehzad, and A Alsaedi. 2017b. “Chemical Reaction and Heat Generation/Absorption Aspects in Flow of Walters-B Nanofluid with Cattaneo-Christov Double-Diffusion.” Results in Physics 7: 4145–4152.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., Sumaira Qayyum, Muhammad Ijaz Khan, and Ahmed Alsaedi. 2018b. “Entropy Generation in Magnetohydrodynamic Radiative Flow Due to Rotating Disk in Presence of Viscous Dissipation and Joule Heating.” Physics of Fluids 30 (1): 017101.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T, M Waqas, SA Shehzad, and A Alsaedi. 2017c. “On 2D Stratified Flow of an Oldroyd-B Fluid with Chemical Reaction: An Application of non-Fourier Heat Flux Theory.” Journal of Molecular Liquids 223: 566–571.Web of ScienceGoogle Scholar

  • Khan, M.I., Tasawar Hayat, Muhammad Imran Khan, and Ahmed Alsaedi. 2018. “Activation Energy Impact in Nonlinear Radiative Stagnation Point Flow of Cross Nanofluid.” International Communications in Heat and Mass Transfer 91: 216–224.CrossrefWeb of ScienceGoogle Scholar

  • Khan, M.I., Muhammad Waqas, Tasawar Hayat, and Ahmed Alsaedi. 2017. “A Comparative Study of Casson Fluid with Homogeneous-Heterogeneous Reactions.” Journal of Colloid and Interface Science 498: 85–90.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, K.G., B.J. Gireesha, and R.S.R. Gorla. 2018. “Flow and Heat Transfer of Dusty Hyperbolic Tangent Fluid over a Stretching Sheet in the Presence of Thermal Radiation and Magnetic Field.” International Journal of Mechanical and Materials Engineering 13 (1): 2.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, K.G., BJ Gireesha, M.R. Krishanamurthy, and N.G. Rudraswamy. 2017a. “An Unsteady Squeezed Flow of a Tangent Hyperbolic Fluid over a Sensor Surface in the Presence of Variable Thermal Conductivity.” Results in Physics 7: 3031–3036.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, K.G., B.J. Gireesha, S. Manjunatha, and N.G. Rudraswamy. 2017b. “Effect of Nonlinear Thermal Radiation on Double-Diffusive Mixed Convection Boundary Layer Flow of Viscoelastic Nanofluid over a Stretching Sheet.” International Journal of Mechanical and Materials Engineering 12 (1): 18.Web of ScienceCrossrefGoogle Scholar

  • Kumar, K.G., B.J. Gireesha, N.G. Rudraswamy, and S. Manjunatha. 2017c. “Radiative Heat Transfers of Carreau Fluid Flow over a Stretching Sheet with Fluid Particle Suspension and Temperature Jump.” Results in Physics 7: 3976–3983.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, K.G., N.G. Rudraswamy, and B.J. Gireesha. 2017. “Effects of Mass Transfer on MHD Three Dimensional Flow of a Prandtl Liquid over a Flat Plate in the Presence of Chemical Reaction.” Results in Physics 7: 3465–3471.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, K.G., N.G. Rudraswamy, B.J. Gireesha, and S. Manjunatha. 2017d. “Non-Linear Thermal Radiation Effect on Williamson Fluid with Particle-Liquid Suspension past a Stretching Surface.” Results in Physics 7: 3196–3202.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, R., S Sood, M Sheikholeslami, and SA Shehzad. 2017e. “Nonlinear Thermal Radiation and Cubic Autocatalysis Chemical Reaction Effects on the Flow of Stretched Nanofluid under Rotational Oscillations.” Journal of Colloid and Interface Science 505: 253–265.CrossrefWeb of ScienceGoogle Scholar

  • Makinde, O.D., K.G. Kumar, S. Manjunatha, and B.J. Gireesha. 2017. “Effect of Nonlinear Thermal Radiation on MHD Boundary Layer Flow and Melting Heat Transfer of Micro-Polar Fluid over a Stretching Surface with Fluid Particles.” Defect and Diffusion Forum 378: 125–136.CrossrefGoogle Scholar

  • Nadeem, Sohail, and Safia Akram. 2011. “Magneto Hydrodynamic Peristaltic Flow of a Hyperbolic Tangent Fluid in a Vertical Asymmetric Channel with Heat Transfer.” Acta Mechanisms Sin 27 (2): 237–250.CrossrefGoogle Scholar

  • Nadeem, Sohail, S. Ijaz, and N.S. Akbar. 2013. “Nanoparticle Analysis for Blood Flow of Prandtl Fluid Model with Stenosis.” International Nano Letters 3 (35): 2–13.Google Scholar

  • Nasrin, R., and M.A. Alim. 2012. “Prandtl Number Effect on Free Convective Flow in a Solar Collector Utilizing Nanofluid.” Engineering Transactions 7 (2): 62–72.Google Scholar

  • Nasrin, Rehena, Salma Parvin, and M.A. Alim. 2016. “Prandtl Number Effect on Assisted Convective Heat Transfer through a Solar Collector.” Applications and Applied Mathematics: an International Journal 2: 22–36.Google Scholar

  • Qayyum, S, T Hayat, SA Shehzad, and A Alsaedi. 2017. “Effect of a Chemical Reaction on Magnetohydrodynamic (MHD) Stagnation Point Flow of Walters-B Nanofluid with Newtonian Heat and Mass Conditions.” Nuclear Engineering and Technology 49 (8): 1636–1644.CrossrefWeb of ScienceGoogle Scholar

  • Ramesh, G.K., K. Ganesh Kumar, S.A. Shehzad, and B.J. Gireesha. 2017. “Enhancement of Radiation on Hydromagnetic Casson Fluid Flow Towards a Stretched Cylinder with Suspension of Liquid-Particles.” Canadian Journal of Physics 999: 1–7.Web of ScienceGoogle Scholar

  • Saffman, P.G. 1962. “On the Stability of Laminar flow of a Dusty Gas.” Journal of Fluid Mechanics 13: 120–128.CrossrefGoogle Scholar

  • Thammanna, G.T., K.G. Kumar, B.J. Gireesha, and G.K. Ramesh. 2017. “Three Dimensional MHD Flow of Couple Stress Casson Fluid past an Unsteady Stretching Surface with Chemical Reaction.” Results in Physics 7: 4104–4110.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-01-15

Accepted: 2018-07-01

Revised: 2018-03-20

Published Online: 2018-07-10

Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 8, 20180009, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0009.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in