Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Impact of Dense Internals on Fluid Dynamic Parameters in Bubble Column

Dinesh V. Kalaga
  • Corresponding author
  • Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
  • Department of Chemical Engineering, Indian Institute of Technology-Gandhinagar, Gandhinagar 382424, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vishal Bhusare / H.J. Pant
  • Isotope and Radiation Applications Division, Bhabha Atomic Research Centre, Anushaktinagar, Mumbai 400094, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jyeshtharaj B. Joshi
  • Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
  • Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shantanu Roy
  • Corresponding author
  • Department of Chemical Engineering, Indian Institute of Technology-Delhi, New Delhi 110016, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-25 | DOI: https://doi.org/10.1515/ijcre-2018-0012

Abstract

Industrial gas-liquid processes such as oxidation, hydrogenation, Fischer-Trospch synthesis, liquid-phase methanol synthesis, and nuclear fission are exothermic in nature; the reactor of choice for such processes is, therefore, a bubble column equipped with heat exchanging internals. In addition to maintaining the desired process temperature, the heat exchanging vertical tube internals are used to control flow structures and liquid back mixing. The present work reports the experimentally measured gas hold-up, mean liquid velocity and liquid phase turbulent kinetic energy, using the Radioactive Particle Tracking (RPT) technique, in a 120 mm diameter bubble column equipped with dense vertical tube internals covering 23 % of the total cross-sectional area of the column. The effect of superficial gas velocity (44–265 mm/s) on gas hold-up, mean liquid velocity and turbulent kinetic energy is presented and discussed. It has been inferred from the experimental results that the vertical tube internal located at the center of the column plays a vital role in affecting the hydrodynamics when compared to the conventional internal configurations reported in the literature. For the chosen dense internal configuration, the cross-sectional distribution of the gas holdup, mean liquid velocity and turbulent kinetic energy show asymmetry for all the superficial gas velocities investigated. The overall gas holdup and the liquid turbulence increases with an increase in the superficial gas velocity. The strong liquid circulation velocities have been seen upon the insertion of the dense internals.

Keywords: bubble column with internals; vertical tube internals; gas hold-up; liquid phase turbulence

References

  • Al Abdulmohsin, R. S., and M. H. Al-Dahhan. 2012. “Impact of Internals on the Heat-Transfer Coefficient in a Bubble Column.” Industrial Engineering Chemical Researcher 51: 2874–81. .CrossrefGoogle Scholar

  • Al Mesfer, M. K., A. J. Sultan, and M. H. Al-Dahhan. 2016. “Impacts of Dense Heat Exchanging Internals on Gas Holdup Cross-Sectional Distributions and Profiles of Bubble Column Using Gamma Ray Computed Tomography (CT) for FT Synthesis.” Chemical Engineering Journal 300: 317–33. .CrossrefWeb of ScienceGoogle Scholar

  • Al-Oufi, F. M., I. W. Cumming, and C. D. Rielly. 2010. “Destabilisation of Homogeneous Bubbly Flow in an Annular Gap Bubble Column.” Canada Journal Chemical Engineering 88: 482–90. .CrossrefGoogle Scholar

  • Balamurugan, V., D. Subbarao, and S. Roy. 2010. “Enhancement in Gas Holdup in Bubble Columns through Use of Vibrating Internals.” Canada Journal Chemical Engineering 88: 1010–20. .CrossrefGoogle Scholar

  • Bhusare, V. H., M. K. Dhiman, D. V. Kalaga, S. Roy, and J. B. Joshi. 2017a. “CFD Simulations of a Bubble Column with and without Internals by Using OpenFOAM.” Chemical Engineering Journal 317: 157–74. .CrossrefWeb of ScienceGoogle Scholar

  • Bhusare, V. H., D. V. Kalaga, M. K. Dhiman, S. Roy, and J. B. Joshi. 2017b. “Mixing in a Co-Current Upflow Bubble Column Reactors with and without Internals.” The Canadian Journal of Chemical Engineering. .CrossrefWeb of ScienceGoogle Scholar

  • Boutet, C. L., F. Larachi, N. Dromard, O. Delsart, and D. Schweinch. 2009. “CFD Simulation of Bubble Column Flows: Investigations on Turbulence Models in RANS Approach.” Chemical Engineering Sciences 64: 4399–413. .CrossrefGoogle Scholar

  • Chen, J., F. Li, S. Degaleesan, P. Gupta, M. H. Al-Dahhan, M. P. Dudukovic, and B. A. Toseland. 1999. “Fluid Dynamic Parameters in Bubble Columns with Internals.” Chemical Engineering Sciences 54: 2187–97. .CrossrefGoogle Scholar

  • Doshi, Y. K., and A. B. Pandit. 2005. “Effect of Internals and Sparger Design on Mixing Behavior in Sectionalized Bubble Column.” Chemical Engineering Journal 112: 117–29. .CrossrefGoogle Scholar

  • Forret, A., J. M. Schweitzer, T. Gauthier, R. Krishna, and D. Schweich. 2003. “Liquid Dispersion in Large Diameter Bubble Columns, with and without Internals.” Canada Journal Chemical Engineering 81: 360–66. .CrossrefGoogle Scholar

  • Guan, X., Y. Gao, Z. Tian, L. Wang, Y. Cheng, and X. Li. 2015. “Hydrodynamics in Bubble Columns with Pin-Fin Tube Internals.” Chemical Engineering Researcher Design 102: 196–206. .CrossrefGoogle Scholar

  • Guan, X., and N. Yang. 2017. “CFD Simulation of Pilot-Scale Bubble Columns with Internals: Influence of Interfacial Forces.” Chemical Engineering Researcher Design 126: 109–22.CrossrefGoogle Scholar

  • Gupta, A., and S. Roy. 2013. “Euler-Euler Simulation of Bubbly Flow in a Rectangular Bubble Column: Experimental Validation with Radioactive Particle Tracking.” Chemical Engineering Journal 225: 818–36. .CrossrefWeb of ScienceGoogle Scholar

  • Jhawar, A. K., and A. Prakash. 2014. “Bubble Column with Internals: Effects on Hydrodynamics and Local Heat Transfer.” Chemical Engineering Researcher Design 92: 25–33. .CrossrefGoogle Scholar

  • Joshi, J. B. 2001. “Computational Flow Modelling and Design of Bubble Column Reactors.” Chemical Engineering Sciences 56: 5893–933. .CrossrefGoogle Scholar

  • Joshi, J. B., V. S. Vitankar, A. A. Kulkarni, M. T. Dhotre, and K. Ekambara. 2002. “Coherent Flow Structures in Bubble Column Reactors.” Chemical Engineering Sciences 57: 3157–83. .CrossrefGoogle Scholar

  • Kagumba, M., and M. H. Al-Dahhan. 2015. “Impact of Internals Size and Configuration on Bubble Dynamics in Bubble Columns for Alternative Clean Fuels Production.” Industrial Engineering Chemical Researcher 54: 1359–72. .CrossrefGoogle Scholar

  • Kalaga, D. V. 2015. "Hydrodynamic, Mixing and Mass Transfer Characteristics of Multiphase Reactors." Ph.D. thesis, Gandhinagar, India: IIT.Google Scholar

  • Kalaga, D. V., H. J. Pant, S. V. Dalvi, J. B. Joshi, and S. Roy. 2017b. “Investigation of Hydrodynamics in Bubble Column with Internals Using Radioactive Particle Tracking (RPT).” AIChE Journal. American Institute of Chemical Engineers 63: 4881–94. .CrossrefGoogle Scholar

  • Kalaga, D. V., A. Yadav, S. Goswami, V. Bhusare, H. J. Pant, S. V. Dalvi, J. B. Joshi, and S. Roy. 2017a. “Comparative Analysis of Liquid Hydrodynamics in a Co-Current Flow-Through Bubble Column with Densely Packed Internals via Radiotracing and Radioactive Particle Tracking (RPT).” Chemical Engineering Sciences 170: 332–46. .CrossrefGoogle Scholar

  • Larachi, F., D. Desvigne, L. Donnat, and D. Schweich. 2006. “Simulating the Effects of Liquid Circulation in Bubble Columns with Internals.” Chemical Engineering Sciences 61: 4195–206. .CrossrefGoogle Scholar

  • Pradhan, A. K., R. K. Parichha, and P. De. 1993. “Gas Hold-Up in Non-Newtonian Solutions in a Bubble Column with Internals.” Canada Journal Chemical Engineering 71: 468–71. .CrossrefGoogle Scholar

  • Roy, S., F. Larachi, M. H. Al-Dahhan, and M. P. Dudukovic. 2002. “Optimal Design of Radioactive Particle Tracking Experiments for Flow Mapping in Opaque Multiphase Reactors.” Applications Radiation Isot 56: 485–503. .CrossrefGoogle Scholar

  • Upadhyay, R. K., H. J. Pant, and S. Roy. 2013. “Liquid Flow Patterns in Rectangular Air-Water Bubble Column Investigated with Radioactive Particle Tracking.” Chemical Engineering Sciences 96: 152–64. .CrossrefGoogle Scholar

  • Youssef, A. A., and M. H. Al-Dahhan. 2009. “Impact of Internals on the Gas Holdup and Bubble Properties of a Bubble Column.” Industrial Engineering Chemical Researcher 48: 8007–13. DOI: .CrossrefGoogle Scholar

  • Youssef, A. A., M. H. Al-Dahhan, and M. P. Dudukovic. 2013a. “Bubble Columns with Internals: A Review.” International Journal Chemical Reactions Engineering 11: 1–55. DOI: .CrossrefGoogle Scholar

  • Youssef, A. A., M. E. Hamed, J. T. Grimes, M. H. Al-Dahhan, and M. P. Duduković. 2013b. “Hydrodynamics of Pilot-Scale Bubble Columns: Effect of Internals.” Industrial Engineering Chemical Researcher 52: 43–55. DOI: .CrossrefGoogle Scholar

About the article

Received: 2018-01-18

Accepted: 2018-09-16

Revised: 2018-05-29

Published Online: 2018-09-25


Citation Information: International Journal of Chemical Reactor Engineering, 20180012, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0012.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in