Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Numerical Study on the Kinetic Effects of Hydrogen Addition on the Thermal Characteristics of Laminar Methane Diffusion Flames

Long Wu
  • Corresponding author
  • Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science & Technology, Tianjin, 300222, China
  • Tianjin International Joint Research and Development Center of Low-Carbon Green Process Equipment, Tianjin, 300222, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Noriyuki Kobayashi
  • Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhanyong Li
  • Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science & Technology, Tianjin, 300222, China
  • Tianjin International Joint Research and Development Center of Low-Carbon Green Process Equipment, Tianjin, 300222, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-19 | DOI: https://doi.org/10.1515/ijcre-2018-0018

Abstract

The kinetic effects of H2 addition on the thermal characteristics of laminar methane diffusion flames were numerically studied using a detailed chemical kinetics consisting of 53 species and 325 reactions. The variations in the heat release properties and relevant key reactions with H2 addition were analyzed. Results show that the reactions of H + O2 + H2O ⇔ HO2 + H2O (R35), H + HO2 ⇔ OH + OH (R46), H + CH3 (+ M) ⇔ CH4 (+ M) (R52) and OH + H2 ⇔ H + H2O (R84) present important roles in the global heat release and the contributions of these reactions significantly increased as H2 is added to CH4 stream. Moreover, the increase rate of contribution of R84 with H2 addition is much larger than those of the reactions of R35, R46 and R52. The H and OH are the two most important radicals for heat release in the combustion process of CH4-H2 diffusion flame. The reaction of R84 is one of the main contributors for production of H radical and the contribution of R84 significantly increased with H2 addition, while the reaction of H + O2 ⇔ O + OH (R38) dominates the contribution of production of OH, which contributes more than 50 %, no matter whether H2 is added to CH4 stream.

Keywords: methane diffusion flame; hydrogen addition; heat release; detail chemical kinetics; key reactions

References

  • Barlow, R. S. 2003 “Radiation Models.” Radiation, Accessed on 2 October 2017, http://www.ca.sandia.gov/TNF/radiation.html.Google Scholar

  • Choi, J. H., C. H. Hwang, K. C. Sang, M. L. Sang, W. J. Lee, S. H. Jang, and S. H. Park. 2016. “Impacts of Hydrogen Addition on Micro and Nanostructure of Soot Particles Formed in C2H4/air Counter Diffusion Flames.” International Journal of Hydrogen Energy 41: 15852–15858.Web of ScienceCrossrefGoogle Scholar

  • De Ferrieres, S., A. El Bakali, L. Gasnot, M. Montero, and J. F. Pauwels. 2013. “Kinetic Effect of Hydrogen Addition on Natural Gas Premixed Flames.” Fuel 106: 88–97.CrossrefWeb of ScienceGoogle Scholar

  • Fairweather, M., W. P. Jones, and R. P. Lindstedt. 1992. “Predictions of Radiative Transfer from a Turbulent Reacting Jet in a Cross-Wind.” Combustion & Flame 89: 45–63.CrossrefGoogle Scholar

  • Hawkes, E. R., and J. H. Chen. 2004. “Direct Numerical Simulation of Hydrogen-Enriched Lean Premixed Methane–Air Flames.” Combustion & Flame 138: 242–258.CrossrefGoogle Scholar

  • Hu, E., Z. Huang, J. He, C. Jin, and J. Zheng. 2009. “Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames.” International Journal of Hydrogen Energy 34: 4876–4888.Web of ScienceCrossrefGoogle Scholar

  • Lafay, Y., B. Renou, G. Cabot, and M. Boukhalfa. 2008. “Experimental and Numerical Investigation of the Effect of H 2 Enrichment on Laminar Methane–Air Flame Thickness.” Combustion & Flame 153: 540–561.CrossrefWeb of ScienceGoogle Scholar

  • Law, C. K., and C. J. Sung. 2000. “Structure, Aerodynamics, and Geometry of Premixed Flamelets.” Progress in Energy & Combustion Science 26: 459–505.CrossrefGoogle Scholar

  • Li, Q., H. Ge, S. Liao, C. Qian, Z. Chi, and C. Yuan. 2014. “Kinetic Effects of Hydrogen Addition on the Thermal Characteristics of Methane–Air Premixed Flames.” Energy & Fuels 28: 4118–4129.CrossrefWeb of ScienceGoogle Scholar

  • Liu, F. S., H. S. Guo, and G. J. Smallwood. 2004. “Effects of Radiation Model on the Modeling of a Laminar Coflow Methane/Air Diffusion Fame.” Combustion and Flame 138: 136–154.CrossrefGoogle Scholar

  • Luo, M., and D. Liu. 2016. “Combustion Characteristics of Primary Reference Fuels with Hydrogen Addition.” International Journal of Hydrogen Energy 41: 11471–11480.Web of ScienceCrossrefGoogle Scholar

  • Moss, J. B., C. D. Stewart, and K. J. Young. 1995. “Modeling Soot Formation and Burnout in a High Temperature Laminar Diffusion Flame Burning under Oxygen-Enriched Conditions.” Combustion & Flame 101: 491–500.CrossrefGoogle Scholar

  • Park, J. W., and C. B. Oh. 2012. “Flame Structure and Global Flame Response to the Equivalence Ratios of Interacting Partially Premixed Methane and Hydrogen Flames.” International Journal of Hydrogen Energy 37: 7877–7888.Web of ScienceCrossrefGoogle Scholar

  • Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere: New York. 1980.Google Scholar

  • Ranzi, E., A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. P. Kelley, and C. K. Law. 2012. “Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels.” Progress in Energy & Combustion Science 38: 468–501.CrossrefWeb of ScienceGoogle Scholar

  • Sarlia, V. D., and A. D. Benedettob. 2007. “Laminar Burning Velocity of Hydrogen–Methane/Air Premixed Flames.” International Journal of Hydrogen Energy 32: 637–646.Web of ScienceCrossrefGoogle Scholar

  • Sen, A. K., J. Wang, and Z. Huang. 2011. “Investigating the Effect of Hydrogen Addition on Cyclic Variability in a Natural Gas Spark Ignition Engine: Wavelet Multiresolution Analysis.” Applied Energy 88: 4860–4866.CrossrefWeb of ScienceGoogle Scholar

  • Smith, G. P. 1999. “GRI-Mech.” GRI-Mech, Accessed on 2 October 2017, http://www.me.berkeley.edu/gri_mech/.Google Scholar

  • Song, Y., C. Zou, Y. He, and C. Zheng. 2015. “The Chemical Mechanism of the Effect of CO2 on the Temperature in Methane Oxy-Fuel Combustion.” International Journal of Heat & Mass Transfer 86: 622–628.CrossrefWeb of ScienceGoogle Scholar

  • Spalding, D. B. 1980. New Developments and Computed Results, Imperial College CFDU Report HTS/81/1. Imperial College: London, UK. 1980.Google Scholar

  • Tang, C., X. Man, L. Wei, L. Pan, and Z. Huang. 2013. “Further Study on the Ignition Delay Times of Propane–Hydrogen–Oxygen–Argon Mixtures: Effect of Equivalence Ratio.” Combustion & Flame 160: 2283–2290.Web of ScienceCrossrefGoogle Scholar

  • Thurgood, C. P., A. Pollard, and H. A. Becker. 1995. “The TN Quadrature Set for the Discrete Ordinates Method.” Journal of Heat Transfer 117: 1068–1070.CrossrefGoogle Scholar

  • Wan, J., A. Fan, H. Yao, and W. Liu. 2015. “Flame-Anchoring Mechanisms of a Micro Cavity-Combustor for Premixed H2/Air Flame.” Chemical Engineering Journal 275: 17–26.Web of ScienceCrossrefGoogle Scholar

  • Wang, J., Z. Huang, C. Tang, H. Miao, and X. Wang. 2009. “Numerical Study of the Effect of Hydrogen Addition on Methane–Air Mixtures Combustion.” International Journal of Hydrogen Energy 34: 1084–1096.Web of ScienceCrossrefGoogle Scholar

  • Wang, J., Z. Huang, C. Tang, and J. Zheng. 2010. “Effect of Hydrogen Addition on Early Flame Growth of Lean Burn Natural Gas–Air Mixtures.” International Journal of Hydrogen Energy 35: 7246–7252.CrossrefWeb of ScienceGoogle Scholar

  • Wei, M., J. Liu, G. Guo, and S. Li. 2016. “The Effects of Hydrogen Addition on Soot Particle Size Distribution Functions in Laminar Premixed Flame.” International Journal of Hydrogen Energy 41: 6162–6169.CrossrefWeb of ScienceGoogle Scholar

  • Wu, L., N. Kobayashi, Z. Y. Li, and H. Y. Huang. 2015a. “Numerical Study of the Effects of Oxygen Concentration and Fuel Jet Velocity on Thermal Radiation in Methane and Propane Turbulent Diffusion Flames.” Canadian Journal of Chemical Engineering 93: 1567–1576.CrossrefWeb of ScienceGoogle Scholar

  • Wu, L., N. Kobayashi, Z. Y. Li, H. Y. Huang, and J. Li. 2015b. “Emission and Heat Transfer Characteristics of Methane-Hydrogen Hybrid Fuel Laminar Diffusion Flame.” International Journal of Hydrogen Energy 40: 9579–9589.CrossrefWeb of ScienceGoogle Scholar

  • Yu, G., C. K. Law, and C. K. Wu. 1986. “Laminar Flame Speeds of Hydrocarbon + Air Mixtures with Hydrogen Addition.” Combustion & Flame 63: 339–347.CrossrefGoogle Scholar

About the article

Received: 2018-01-27

Accepted: 2018-06-10

Revised: 2018-04-21

Published Online: 2018-06-19


Citation Information: International Journal of Chemical Reactor Engineering, 20180018, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0018.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in