Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Ahead of print

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Design of Impeller Blades for Intensification of Gas-Liquid Dispersion Process in a Stirred Tank

Deyin Gu
  • School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing 400044, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zuohua Liu
  • Corresponding author
  • School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing 400044, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Changyuan Tao
  • Corresponding author
  • School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing 400044, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jun Li / Yundong Wang
Published Online: 2018-10-05 | DOI: https://doi.org/10.1515/ijcre-2018-0022

Abstract

Gas-liquid dispersion characteristics were experimentally investigated by measuring largest Lyapunov exponent (LLE), relative power demand (RPD), and local gas holdup in a stirred tank with rigid impellers, rigid-flexible impellers, and punched rigid-flexible impellers. Results showed that punched rigid-flexible impeller could enhance the value of LLE, namely, the chaotic mixing degree of gas-liquid system compared with rigid impeller and rigid-flexible impeller. RPD for punched rigid-flexible impeller was higher than that for rigid impeller and rigid-flexible impeller. The local gas holdup of punched rigid-flexible impeller system was higher than those of rigid impeller system and rigid-flexible impeller system at the same Pg,m. In addition, a long flexible connection piece length could improve the chaotic mixing degree, RPD, and local gas holdup. The aperture diameter of 8 mm and free area ratio of 12 % of punched rigid-flexible impeller were particularly suitable for the gas-liquid dispersion process in this work.

Keywords: gas-liquid dispersion; largest lyapunov exponent; relative power demand; local gas holdup; punched rigid-flexible impeller

References

  • Bakker, A, J M Smith, and K J Myers. 1994. “How to Disperse Gases in Liquids.” Chemical Engineering 101: 98–102.Google Scholar

  • Bao, Y Y, B J Wang, M L Lin, Z M Gao, and J. Yang. 2015. “Influence of Impeller Diameter on Overall Gas Dispersion Properties in a Sparged Multi-Impeller Stirred Tank.” Chinese Journal Chemical Engineering 23: 890–96.CrossrefWeb of ScienceGoogle Scholar

  • Bashiri, H, F Bertrand, and J. Chaouki. 2016. “Development of a Multiscale Model for the Design and Scale-Up of Gas/Liquid Stirred Tank Reactors.” Chemical Engineering Journal 297: 277–94.Web of ScienceCrossrefGoogle Scholar

  • Cabaret, F, L Fradette, and P A. Tanguy. 2008. “Gas-Liquid Mass Transfer in Unbaffled Dual-Impeller Mixers.” Chemical Engineering Science 63: 1636–47.Web of ScienceCrossrefGoogle Scholar

  • Chen, J G, D Y Luan, S J Zhou, and S Y. Chen. 2011. “Numerical Simulation of Solid-Liquid Suspension Performance with a Four-Pitched-Blade Punched Turbine.” Petroleum Chemical Equations 40: 29–34.Google Scholar

  • Chen, M N, J J Wang, S W Zhao, Chaozhong Xu, and L F Feng. 2016. “Optimization of Dual-Impeller Configurations in a Gas−Liquid Stirred Tank Based on Computational Fluid Dynamics and Multiobjective Evolutionary Algorithm.” Industrial & Engineering Chemistry Research 55: 9054–63.CrossrefWeb of ScienceGoogle Scholar

  • Devi, T T, and B. Kumar. 2017. “Mass Transfer and Power Characteristics of Stirred Tank with Rushton and Curved Blade Impeller.” Engineering Science and Technology, an International Journal 20: 730–37.CrossrefWeb of ScienceGoogle Scholar

  • Edward, L P, A A O Victor, and M K. Suzanne. 2004. Handbook of Industrial Mixing Science and Practice. Canada: Wiley & Sons, Inc., Hoboken, New Jersey.Google Scholar

  • Fasano, J B, K J Myers, and E E. Janz. 2011. “Effect of Geometric Variations on the Performance of Gas Dispersion Impellers with Semicircular Blades.” The Canadian Journal of Chemical Engineering 89: 961–68.Web of ScienceCrossrefGoogle Scholar

  • Gelves, R, A Dietrich, and R. Takors. 2014. “Modeling of Gas-Liquid Mass Transfer in a Stirred Tank Bioreactor Agitated by a Rushton Turbine or a New Pitched Blade Impeller.” Bioprocess Biosystems Engineering 37 (3): 365–75.CrossrefWeb of ScienceGoogle Scholar

  • Gimbum, R, C D Rielly, and Z K. Nagy. 2009. “Modelling of Mass Transfer in Gas-Liquid Stirred Tanks Agitated by Rushton Turbine and CD-6 Impeller: A Scale-Up Study.” Chemical Engineering Researcher Design 87: 437–51.CrossrefGoogle Scholar

  • Gu, D Y, Z H Liu, J Li, Z M Xie, C Y Tao, and Y D. Wang. 2017. “Intensification of Chaotic Mixing in a Stirred Tank with a Punched Rigid-Flexible Impeller and a Chaotic Motor.” Chemical Engineering Processing.: Process Intensification 122: 1–9.CrossrefWeb of ScienceGoogle Scholar

  • Jahoda, M, L Tomaskova, and M. Mostek. 2009. “CFD Prediction of Liquid Homogenization in a Gas-Liquid Stirred Tank.” Chemical Engineering Researcher Design 87: 460–67.CrossrefGoogle Scholar

  • Junker, B H, M Stanik, C Barna, P Salmon, E Paula, and B C. Buckland. 1998. “Influence of Impeller Type on Power Input in Fermentation Vessels.” Bioprocess Engineering 18: 401–12.CrossrefGoogle Scholar

  • Kerdouss, F, A Bannari, and P. Proulx. 2006. “CFD Modeling of Gas Dispersion and Bubble Size in a Double Turbine Stirred Tank.” Chemical Engineering Science 61: 3313–22.CrossrefGoogle Scholar

  • Labík, L, R Vostal, T Moucha, F J Rejl, and M. Kordaˇc. 2014. “Volumetric Mass Transfer Coefficient in Multiple-Impeller Gas–Liquid Contactors.” Scaling-Up Study for Various Impeller Types Chemical Engineering Journal 240: 55–61.Google Scholar

  • Liu, J, Y F Ou, and N Q. Wang. 1999. “Agitation Characteristics of a New Type Punched Agitator Used in Solid-Liquid System.” Journal Si Chuan Union University 3: 48–53.Google Scholar

  • Liu, Z H, C Chen, R L Liu, C Y Tao, and Y D. Wang. 2014. “Chaotic Mixing Enhanced by Rigid-Flexible Impeller in Stirred Vessel.” CIESC Journal 65: 61–70.Google Scholar

  • Liu, Z H, W Z Ning, and C Y. Tao. 2011. Impeller Improved the Leaching Rate of Electrolytic Metal Manganese. China. 201110027019.1.Google Scholar

  • Liu, Z H, X Y Yang, Z M Xie, R L Liu, C Y Tao, and Y D. Wang. 2013. “Chaotic Mixing Performance of High-Viscosity Fluid Synergistically Intensified by Flexible Impeller and Floating Particles.” CIESC Journal 64: 2794–2780.Google Scholar

  • Long, J G, Y Y Bao, and Z M. Gao. 2005. “Gas-Liquid Dispersion in a Stirred Tank with Different Impeller Combinations.” Journal Beijing University Chemical Technical 32 (5): 1–5.Google Scholar

  • Ma, Z C, Y Y Bao, N Gao, and Z M. Gao. 2009. “Gas-Liquid Dispersion by Hollow-Blade Disk Turbines with Different Blade Shapes.” Chinese Journal Process Engineering 9 (5): 854–59.Google Scholar

  • Montane, G, D Horn, and A. Paglianti. 2008. “Gas-Liquid Flow and Bubble Size Distribution in Stirred Tank.” Chemical Engineering Science 63: 2107–18.CrossrefGoogle Scholar

  • Pinelli, D, A Bakker, K J Myers, M F Reeder, J Fasano, and F. Magelli. 2003. “Some Features of a Novel Gas Dispersion Impeller in a Dual-Impeller Configuration.” Chemical Engineering Researcher Design 81: 448–54.CrossrefGoogle Scholar

  • Roman, R V, and R Z. Tudose. 1996. “Studies on Transfer Process in Mixing Vessels: Hydrodynamic of the Modified Rushton Turbine Agitators in Gas-Liquid Dispersions.” Chemical Engineering Journal 61: 83–93.Google Scholar

  • Vasconcelos, J M T, S C P Orvalho, A M A F Rodrigues, and S S. Alves. 2000. “Effect of Blade Shape on the Performance of Six-Bladed Disk Turbine Impellers.” Industrial & Engineering Chemistry Research 39: 203–13.CrossrefGoogle Scholar

  • Yang, F L, S J Zhou, and X H. An. 2015a. “Gas-Liquid Hydrodynamics in a Vessel Stirred by Dual Dislocated-Blade Rushton Impellers.” Chinese Journal Chemical Engineering 23: 1746–54.CrossrefWeb of ScienceGoogle Scholar

  • Yang, H, F Wang, and C X. Wang. 2015b. “Optimizing Structural Parameters of Punched Impeller.” Journal Wuhan Institute Technical 37: 39–43.Google Scholar

  • Young, Y L. 2008. “Fluid-Structure Interaction Analysis of Flexible Composite Marine Propellers.” Journal of Fluids and Structures 24 (1): 799–818.Web of ScienceCrossrefGoogle Scholar

  • Zhang, J J, Z M Gao, Y T Ca, Z Q Cai, J Yang, and Y Y. Bao. 2016. “Mass Transfer in Gas-Liquid Stirred Reactor with Various Triple-Impeller Combinations.” Chinese Journal Chemical Engineering 24: 703–10.Web of ScienceCrossrefGoogle Scholar

  • Zhang, J J, Z M Gao, Y T Cai, H Y Cao, Z Q Cai, and Y Y. Bao. 2017. “Power Consumption and Mass Transfer in a Gas-Liquid-Solid Stirred Tank Reactor with Various Triple-Impeller Combinations.” Chemical Engineering Science 170: 464–75.Web of ScienceCrossrefGoogle Scholar

  • Zheng, Z, D Sun, J Li, X Zhan, and M. Gao. 2018. “Improving Oxygen Transfer Efficiency by Developing a Novel Energy-Saving Impeller.” Chemical Engineering Researcher Design 130: 199–207.CrossrefGoogle Scholar

About the article

Received: 2018-02-02

Accepted: 2018-09-22

Revised: 2018-04-24

Published Online: 2018-10-05


Citation Information: International Journal of Chemical Reactor Engineering, 20180022, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0022.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in