Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Detection of Agglomeration by Analysis of Vibration Signatures in a Pilot-Scale Fluidized Bed Reactor of Propylene Polymerization

Fatemeh Alamolhoda
  • Multiphase Systems Research Lab, School of Chemical Engineering,College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmad Shamiri
  • Chemical & Petroleum Engineering Department, Faculty of Engineering, Technology & Built Environment,UCSI University, 56000, Kuala Lumpur, Malaysia
  • Process System Engineering Center, Faculty of Engineering, Technology & Built Environment,UCSI University, 56000, Kuala Lumpur, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohd Azlan Hussain
  • Department of Chemical Engineering, Faculty of Engineering,University of Malaya, 50603, Kuala Lumpur, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reza Zarghami
  • Multiphase Systems Research Lab, School of Chemical Engineering,College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rahmat Sotudeh-Gharebagh
  • Multiphase Systems Research Lab, School of Chemical Engineering,College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Navid Mostoufi
  • Corresponding author
  • Multiphase Systems Research Lab, School of Chemical Engineering,College of Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-28 | DOI: https://doi.org/10.1515/ijcre-2018-0036

Abstract

Polymerization of propylene was performed in a pilot fluidized bed reactor, resembling an industrial unit. In order to detect agglomeration in this reaction process, wall vibration signatures of the bed, which contains useful information about its hydrodynamics, were measured by an accelerometer. This approach is non-intrusive and can be easily applied in industry. Different methods employed to analyze the measured vibration signatures. Average cycle frequency of the signatures showed that agglomerates were formed and settled down in the reactor during the process. Plot of the power spectral density function of vibration signals showed that the peak corresponding to the dominant frequency generated by bubbles is located around 2,000 Hz. Energy of the signal among the three hydrodynamic structures in the bed (i. e., micro, meso and macro-scales) showed a decrease in share of macro-scale and a slight increase in share of micro and meso-scales due to the formation of agglomerates. The principal component analysis was performed to characterize the hydrodynamic changes occurred in bed due to formation of agglomerates during the polymerization reaction. Using the S-statistic test, changes in the hydrodynamics of the bed due to formation of agglomerates were detected about 20 minutes before defluidization.

Keywords: agglomeration; bed Vibration; fluidized bed; principal component analysis; propylene polymerization

References

  • Abbasi, M., R. Sotudeh-Gharebagh, N. Mostoufi, and M. J. Mahjoob. 2009. “Non-intrusive Monitoring of Bubbles in a Gas–Solid Fluidized Bed using Vibration Signature Analysis.” Powder Technological 196: 278. .CrossrefGoogle Scholar

  • Abbasi, M., R. Sotudeh-Gharebagh, N. Mostoufi, R. Zarghami, and M. J. Mahjoob. 2010. "Nonintrusive Characterization of Fluidized Bed Hydrodynamics using Vibration Signature Analysis." AIChE Journal 56: 597.Web of ScienceGoogle Scholar

  • Alamolhoda, F., A. Shamiri, M. A. Hussain, R. Sotudeh-Gharebagh, and N. Mostoufi. 2015. "Early Detection of Agglomeration in a Polyethylene Fluidized Bed at High Temperature and Pressure by Vibration Signature Analysis." Chemical Engineering Researcher Design 104: 156.CrossrefGoogle Scholar

  • Alamolhoda, F., R. Zarghami, R. Sotudeh-Gharebagh, and N. Mostoufi. 2017. "Effect of Changes in Particle Size on the Hydrodynamics of Gas-Solid Fluidized Beds Through Wall Vibration." Powder Technological 307: 129.CrossrefGoogle Scholar

  • Azizpour, H., R. Sotudeh-Gharebagh, R. Zarghami, M. Abbasi, N. Mostoufi, and M.J. Mahjoob. 2011. "Characterization of Gas–Solid Fluidized Bed Hydrodynamics by Vibration Signature Analysis." International Journal Multiphase Flow 37: 788.Web of ScienceCrossrefGoogle Scholar

  • Bartels, M., B. Vermeer, P. J. T. Verheijen, J. Nijenhuis, F. Kapteijn, and J. R. van Ommen. 2009. "Methodology for the Screening Of Signal Analysis Methods For Selective Detection Of Hydrodynamic Changes In Fluidized Bed Systems." Industrial Engineering Chemical Researcher 48: 3158.CrossrefGoogle Scholar

  • Chiang, L. H., E. L. Russell, and R. D. Braatz. 2001. Fault Detection and Diagnosis in Industrial Systems. New York: Springer-Verlag.Google Scholar

  • Davies, C.E., and K. Fenton. 1997. "Pressure Fluctuations in a Fluidized Bed: A Potential Route to the Continuous Estimation of Particle Size." IPENZ Transactions 24: 12.Google Scholar

  • Diks, C., W. R. van Zwet, F. Takens, and J. DeGoede. 1996. "Detecting Differences between Delay Vector Distributions." Physical Review E 53: 2169.CrossrefGoogle Scholar

  • Gheorghiu, S., J. R. van Ommen, and M. O. Coppens, “Monitoring Fluidized Bed Hydrodynamics using Power-Law Statistics of Pressure Fluctuations,” Fluidization XI, Ischia, 9 – 14 May 2004.Google Scholar

  • Ghorbani, H., R. Sotudeh-Gharebagh, M. Abbasi, R. Zarghami, and N. Mostoufi. 2017. "Modeling of Vibration of a Fluidized Bed Cylindrical Shell." Iranian Journal Chemical Engineering 10: 67.Google Scholar

  • Johnsson, F., R. C. Zijerveld, J. C. Schouten, C. M. van Den Bleek, and B. Leckner. 2000. "Characterization of Fluidization Regimes by Time-Series Analysis of Pressure Fluctuations." International Journal Multiphase Flow 26: 663.CrossrefGoogle Scholar

  • Kantz, H., and T. Schreiber. 2002. Nonlinear Time Series Analysis, 2nd ed. United Kingdom: Cambridge University Press.Google Scholar

  • Karol, F. J., B. E. Wagner, I. J. Levine, G. L. Goeke, and A. Noshay. 1987. “New Catalysis and Process for Ethylene Polymerization.” In Advances in Polyolefins, edited by R. B. Seymour and T. Cheng, 337. Boston: Springer.Google Scholar

  • Lau, I. T., and B. J. P. Whalley. 1981. "A Differential Thermal Probe for Anticipation of Defluidization of Caking Coals." Fuel Processing Technological 4: 101.CrossrefGoogle Scholar

  • Mallat, S. 1989. "A Theory for Multi-Resolution Signal Decomposition: The Wavelet Representation." IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 674.CrossrefGoogle Scholar

  • Nijenhuis, J., R. Korbee, J. Lensselink, J. H. A. Kiel, and J. R. van Ommen. 2007. "A Method for Agglomeration Detection and Control in Full-Scale Biomass Fired Fluidized Beds." Chemical Engineering Sciences 62: 644.CrossrefGoogle Scholar

  • Ren, J., Q. Mao, J. Li, and W. Lin. 2001. "Wavelet Analysis of Dynamic Behavior in Fluidized Beds." Chemical Engineering Sciences 56: 981.CrossrefGoogle Scholar

  • Rioul, O., and P. Duhamel. 1992. "Fast Algorithms for Discrete and Continuous Wavelet Transforms." IEEE Transactions Informatics Theory 38: 569.CrossrefGoogle Scholar

  • Sasic, S., B. Leckner, and F. Johnsson. 2007. "Characterization of fluid dynamics of fluidized beds by analysis of pressure fluctuations." Progress Energy Combust Sciences 33: 453.CrossrefGoogle Scholar

  • Savari, C., R. Sotudeh-Gharebagh, R. Zarghami, and N. Mostoufi. 2016. "Non-Intrusive Characterization of Particle Size Changes in Fluidized Beds Using Recurrence Plots." AIChE Journal 62: 3547.CrossrefWeb of ScienceGoogle Scholar

  • Scala, F., and R. Chirone. 2006. "Characterization and Early Detection of Bed Agglomeration during the Fluidized Bed Combustion of Olive Husk." Energy Fuels 20: 120.CrossrefGoogle Scholar

  • Schouten, J. C., and C. M. van Den Bleek. 1998. "Monitoring the Quality of Fluidization using the Short-Term Predictability of Pressure Fluctuations." AIChE Journal 44: 48.CrossrefGoogle Scholar

  • Shamiri, A., M. A. Hussain, F. S. Mjalli, M. S. Shafeeyan, and N. Mostoufi. 2014. "Experimental and Modeling Analysis of Propylene Polymerization in a Pilot-Scale Fluidized Bed Reactor." Industrial Engineering Chemical Researcher 53: 8694.CrossrefGoogle Scholar

  • Shiea, M., R. Sotudeh-Gharebagh, H. Azizpour, N. Mostoufi, and R. Zarghami. 2013. "Predicting Transition Velocities from Bubbling to Turbulent Fluidization by S-statistics on Vibration Signals." Particle Sciences Technological 31: 10.Google Scholar

  • Tamadondar, M. R., R. Zarghami, H. Azizpour, N. Mostoufi, J. Chaouki, and R. Radmanesh. 2013. "Using S-statistic for Investigating the Effect of Temperature on Hydrodynamics of Gas–Solid Fluidization." Particuology 11: 288.Web of ScienceCrossrefGoogle Scholar

  • Tsujimoto, H., T. Yokoyama, C. C. Huang, and I. Sekiguchi. 2000. "Monitoring Particle Fluidization in a Fluidized Bed Granulator with an Acoustic Emission Sensor." Powder Technological 113: 88.CrossrefGoogle Scholar

  • US. 6301546 B1. 2000. "Process for Detecting, Monitoring Changes in Property of Particulate to Produce Synthesis Gas Involves Sensing Pressure in Fluidized Bed, Processing Collected Pressure Fluctuation Data and Comparing it Over Time." Exxon Research And Engineering Company, invs.: H. Weinstein, R.H. Shabaker, M.L. Tiller, J.H. Taylor, D.R. Pitzer.Google Scholar

  • US4858144 A. 1989. "Detection of Anomalies in Gas Fluidized Bed Polymerization." Bp Chemicals Limited, invs.: A. Marsaly, A. Martens, F. Morterol, C. Ranfast.Google Scholar

  • van Ommen, J. R., M. O. Coppens, and C. M. van Den Bleek. 2000. "Early Warning of Agglomeration in Fluidized Beds by Attractor Comparison." AIChE Journal 46: 2183.CrossrefGoogle Scholar

  • Wang, J., Y. Cao, X. Jiang, and Y. Yang. 2009. "Agglomeration Detection by Acoustic Emission (AE) Sensors in Fluidized Beds." Industrial Engineering Chemical Researcher 48: 3466.CrossrefGoogle Scholar

  • Weiguo, L., W. Xiaodong, W. Fenwei, and W. Haiyan. 2015. "Feature Extraction and Early Warning of Agglomeration in Fluidized Bed Reactors based on an Acoustic Approach." Powder Technological 279: 185.CrossrefGoogle Scholar

  • Wu, B., A. Kantzas, C. T. Bellehumeur, Z. He, and S. Kryuchkov. 2007. "Multiresolution Analysis of Pressure Fluctuations in a Gas–Solids Fluidized Bed: Application to Glass Beads and Polyethylene Powder Systems." Chemical Engineering Journal 131: 23.CrossrefWeb of ScienceGoogle Scholar

  • Xie, T., K. B. McAuley, J. C. C. Hsu, and D. W. Bacon. 1994. "Gas Phase Ethylene Polymerization: Production Processes, Polymer Properties, and Reactor Modeling." Industrial Engineering Chemical Researcher 33: 449.CrossrefGoogle Scholar

  • Yang, T., and L. Leu. 2008. "Multi-resolution Analysis of Wavelet Transform on Pressure Fluctuations in an L-valve." International Journal Multiphase Flow 34: 567.Web of ScienceCrossrefGoogle Scholar

  • Zarghami, R., N. Mostoufi, R. Sotudeh-Gharebagh, and J. Chaouki. 2012. “Nonlinear Dynamic Characteristics of Bubbling Fluidization.” In Advances in Multiphase Flow and Heat Transfer, 1st Edition, edited by L. Cheng and D. Mewes, 400. The Netherlands: Bentham Science Publishers.Google Scholar

  • Zhao, G., and Y. Yang. 2003. “Multiscale Resolution of Fluidized-Bed Pressure Fluctuations.” AIChE Journal 49: 869.CrossrefGoogle Scholar

  • Zhou, Y., K. Dong, H. Zhengliang, J. Wang, and Y. Yang. 2011. "Fault Detection based on Acoustic Emission-Early Agglomeration Recognition System in Fluidized Bed Reactor." Industrial Engineering Chemical Researcher 50: 8476.CrossrefGoogle Scholar

About the article

Received: 2018-02-19

Accepted: 2018-09-15

Revised: 2018-08-11

Published Online: 2018-09-28


Citation Information: International Journal of Chemical Reactor Engineering, 20180036, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0036.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in