Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …
Ahead of print

Issues

Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Gas Phase Back-Mixing in a Mimicked Fischer-Tropsch Slurry Bubble Column Using an Advanced Gaseous Tracer Technique

Lu Han / Ibrahim A. Said
  • Multiphase Flow and Multiphase Reactors Engineering and Applications Laboratory (mFReal), Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, MO 65409, USA
  • Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Muthanna H. Al-Dahhan
  • Corresponding author
  • Multiphase Flow and Multiphase Reactors Engineering and Applications Laboratory (mFReal), Chemical and Biochemical Engineering Department, Missouri University of Science and Technology, Rolla, MO 65409, USA
  • Cihan University-Erbil, Erbil, Iraq
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-20 | DOI: https://doi.org/10.1515/ijcre-2018-0039

Abstract

An advanced gaseous tracer technique and procedures were developed and executed to study for the first time the axial dispersion of the gas phase in a slurry bubble column reactor (SBCR) using air-C9C11-FT catalyst. Residence time distribution (RTD) curves were obtained by measuring the pulse-input’s response of the gaseous tracer. The gas phase axial dispersion coefficient (Dg) was obtained from minimum square error fit of the one-dimensional axial dispersion model to the measured tracer response data. The effects of solids loading on the axial dispersion of gas phase and the overall gas holdup have been studied. It was demonstrated that increasing solids loading improves the gas axial dispersion while decreasing the overall gas holdup. This work suggests that gas phase axial dispersion is significant in reactor performance evaluation of bubble columns or slurry bubble columns.

Keywords: Axial dispersion; slurry bubble column; solids loading; gas holdup

References

  • Abdallah, I. 2017. Experiemntal Study of Natural Convection Heat Transfer and Gaseous Dynamics from Dual-Channel Circulation Loop. Rolla, MO USA: Chemical and Biochemical Engineering Department, Missouri University of Science and Technology.Google Scholar

  • Abdulmohsin, R.S., and M.H. Al-Dahhan. 2016. “Axial Dispersion and Mixing Phenomena of the Gas Phase in a Packed Pebble-Bed Reactor.” Annals of Nuclear Energy 88: 100–11.Google Scholar

  • Bloch, G., H-J. Zander, B. Wunderlich, and T. Acher. 2015. “Axial and Radial Dispersion in a Large-Diameter Bubble Column Reactor at Low Height-To-Diameter Ratio.” Chem Ing Tech 87 (6): 756–61.Google Scholar

  • Degaleesan, S., and M. P. Dudukovic. 1998. “Liquid Backmixing in Bubble Columns and the Axial Dispersion Coefficient.” AIChE Journal 44 (11): 2369–78.Google Scholar

  • Field, R. W., and J. F. Davidson. 1980. “Axial Dispersion in Bubble Columns.” Transactions of the Institution of Chemical Engineers 58 (4): 228–36.Google Scholar

  • Han, L. 2007. Hydrodynamics, Back-Mixing, and Mass Transfer in a Slurry Bubble Column Reactor for Fischer-Tropsch Alternative Fuels. Saint Louis, Missouri: Washington University.Google Scholar

  • Han, L., and M. Al-Dahhan Axial Dispersion of Gas Phase in Slurry Bubble Column Reactor. Paper presented at: 2005 AIChE Annual Meeting, October 2005.Google Scholar

  • Herbolzheimer, E., and E. Iglesia. 1994. Inventors. Slurry Bubble Column. U.S. Patent 5348982. https://patents.google.com/patent/US5348982 https://patentimages.storage.googleapis.com/91/04/c8/c19df657273dd0/US5348982.pdf

  • Joseph, S., Y. T. Shah, and B. G. Kelkar. 1984. “A Simple Experimental Technique to Measure Gas Phase Dispersion in Bubble Columns.” Chemical EngineeringCommunications 28 (4–6): 223–30.Google Scholar

  • Joshi, J. B. 1982. “Gas Phase Dispersion in Bubble Columns.” Chemical Engineering Journal 24 (2): 213–16.Google Scholar

  • Kago, T., Y. Sasaki, T. Kondo, S. Morooka, and Y. Kato. 1989. “Gas Holdup and Axial Dispersion of Gas and Liquid in Bubble Columns of Homogeneous Bubble Flow Regime.” Chemical Engineering Communications 75: 23–38.Google Scholar

  • Kantak, M. V., R. P. Hesketh, and B. G. Kelkar. 1995. “Effect of Gas and Liquid Properties on Gas Phase Dispersion in Bubble Columns.” Chemical Engineering Journal (Lausanne) 59 (2): 91–100.Google Scholar

  • Krishna, R., J. W. A. D. Swart, J. Ellenberger, G. B. Martina, and C. Maretto. 1997. “Gas Holdup in Slurry Bubble Columns: Effect of Column Diameter and Slurry Concentrations.” AIChE Journal 43 (2): 311–16.Google Scholar

  • Kulkarni, A., and Y. T. Shah. 1984. “Gas Phase Dispersion in a Downflow Bubble Column.” Chemical Engineering Communications 28 (4–6): 311–26.Google Scholar

  • Levenspiel, O. 1972. Chemical Reaction Engineering. New York: Wiley Eastern Press.Google Scholar

  • Mangartz, K. H., and T. Pilhofer. 1981. “Interpretation of Mass Transfer Measurements in Bubble Columns considering Dispersion of Both Phases.” Chemical Engineering Science 36 (6): 1069–77.Google Scholar

  • Men’shchikov, V. A., and M. E. Aerov. 1967. “Axial Mixing of the Gas in Gas-Liquid Reactors.” Teoreticheskie Osnovy Khimicheskoi Tekhnologii 1 (6): 891–95.Google Scholar

  • Mills, P. L., and M. P. Dudukovic. 1989. “Convolution and Deconvolution of Nonideal Tracer Response Data with Application to Three-Phase Packed Beds.” Computers & Chemical Engineering 13 (8): 881–98.Google Scholar

  • Mills, P. L., J. R. Turner, P. A. Ramachandran, and M. P. Dudukovic. 1996. “The Fischer-Tropsch Synthesis in Slurry Bubble Column Reactors: Analysis of Reactor Performance Using the Axial Dispersion Model.” Topics in Chemical Engineering 45 (8): 679–739.Google Scholar

  • Ong, B. 2003. Experimental Investigation of Bubble Column Hydrodynamics – Effect of Elevated Pressure and Superficial Gas Velocity. St Louis, MO, USA: Department of Chemical Engineering, Washington University.Google Scholar

  • Pilhofer, T., Bach, H. F., Mangartz, K. H., 1978. “Determination of fluid dynamic parameters in bubble column design.” ACS Symposium Series 65: 372–83.Google Scholar

  • Rados, N. H., M. Al-Dahhan, and M. P. Dudukovic. 2003. “Modeling of the Fischer-Tropsch Synthesis in Slurry Bubble Column Reactors.” Catalysis Today 79 (80): 211–18.Google Scholar

  • Shaikh, A. H., and M. Al-Dahhan. 2007. “A Review on Flow Regime Transition in Bubble Columns.” International Journal of Chemical Reactor Engineering 5 (1): 1–68. DOI: 10.2202/1542-6580.1368.Google Scholar

  • Shetty, S. A., M. V. Kantak, and B.G. Kelkar. 1992. “Gas-Phase Backmixing in Bubblecolumn Reactors.” AIChE Journal 38 (7): 1013–26.Google Scholar

  • Sivaiah, M., and S. K. Majumder. 2013. “Dispersion Characteristics of Liquid in a Modified Gas-Liquid-Solid Three-Phase Downflow Bubble Column.” Particulate Science and Technology 31 (3): 210–20.Google Scholar

  • Song, H. S., D. Ramkrishna, S. Trinh, R. L. Espinoza, and H. Wright. 2003. “Multiplicity and Sensitivity Analysis of Fischer-Tropsch Bubble Column Slurry Reactors: Plug-Flow Gas and Well-Mixed Slurry Model.” Chemical Engineering Science 58 (12): 2759–66.Google Scholar

  • Stern, D., A. T. Bell, and H. Heinemann. 1983. “Effects of Mass Transfer on the Performance of Slurry Reactors Used for Fischer-Tropsch Synthesis.” Chemical Engineering Science 38 (4): 597–605.Google Scholar

  • Stern, D., A. T. Bell, and H. Heinemann. 1985. “Experimental and Theoretical Studies of Fischer-Tropsch Synthesis over Ruthenium in a Bubble-Column Reactor.” Chemical Engineering Science 40 (10): 1917–24.Google Scholar

  • Steynberg, A. P. 2004. Fischer-Tropsch Technology. Amsterdam, Netherland: Elsevier.Google Scholar

  • Towell, G. D., and G. H. Ackermann. 1972. “Axial Mixing of Liquid and Gas in Large Bubble Reactors.” In Proc. 5th European-2nd Internation Symposium on Chemical Reaction Engineering, Amsterdam.Google Scholar

  • Turner, J. R., and P. L. Mills. 1990. “Comparison of Axial Dispersion and Mixing Cell Models for Design and Simulation of Fischer-Tropsch Slurry Bubble Column Reactors.” Chemical Engineering Science 45 (8): 2317–24.Google Scholar

  • Vuuren, D. S. V., and M. D. Heydenrych. 1985. Multicomponent Modeling of Fischer-Tropsch Slurry Reactors. Chemical Engineering Research Group (CSIR) Report CENG 581. Pretoria, South Africa.Google Scholar

  • Wachi, S., and Y. Nojima. 1990. “Gas-Phase Dispersion in Bubble Columns.” Chemical Engineering Science 45 (4): 901–05.Google Scholar

  • Xie, G., and X. Li. 2004. “An Axial Dispersion Model for Evaporating Bubble Column Reactor.” Chinese Journal of Chemical Engineering 12 (2): 214–20.Google Scholar

  • Xue, J. 2004. Bubble Velocity, Size and Interfacial Area Measurements in Bubble Columns. St Louis, MO, USA: Department of Chemical Engineering, Washington University.Google Scholar

About the article


Received: 2018-02-22

Accepted: 2018-09-15

Revised: 2018-07-12

Published Online: 2018-10-20


Citation Information: International Journal of Chemical Reactor Engineering, 20180039, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0039.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in