Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Optimization of Aqueous NH4+/NH3 Photodegradation by ZnO/Zeolite Y Composites Using Response Surface Modeling

Azin Shokrollahi / Shahram Sharifnia
Published Online: 2018-09-28 | DOI: https://doi.org/10.1515/ijcre-2018-0042

Abstract

In this study, ZnO/Zeolite Y composites were synthesized by the solid state dispersion method and employed in order to investigate their photocatalytic performance in NH4+/NH3 removal from an aqueous solution. FTIR spectroscopy, UV-vis diffuse reflectance spectroscopy, SEM and EDX analyses were applied to characterize these composites. The three-factor, three-level Box-Behnken experimental design (BBD), as one of the response surface methodology (RSM), was used to achieve maximum removal of aqueous NH4+/NH3 under optimum conditions by ZnO/Zeolite Y composites. The effects of parameters such as ZnO loading (10–50 wt %), initial pollutant concentration (25–315 mg/L) and solution pH (3–11) as well as their interactions were determined on removal of NH4+/NH3 by the mentioned method. It was found that pH of the solution with the percentage contribution of 86.79 %, was the most important parameter among the others. A second-order polynomial equation was well fitted on the experimental data with the determination coefficient value of 0.9932 and the adjusted determination coefficient value of 0.9864. It could not describe only 0.68 % of observed changes in the response. The predicted removal percentage of NH4+/NH3 at the optimal conditions (pH = 11, NH4+/NH3 initial concentration (207.21 mg/L) and ZnO loading (45.02 wt %)) was achieved 62.26 %, which was in agreement with its experimental value (65 %) obtained in similar conditions.

Keywords: photocatalyst; Box–Behnken experimental design; Zeolite Y; NH4+/NH3; ZnO

References

  • Amornpon, C., M. I. A. Wahab, and N. T. K. Oanh. 2012. “Removal of Benzene by ZnO Nanoparticles Coated on Porous Adsorbents in Presence of Ozone and UV.” Chemical Engineering Journal 181: 215–21.Web of ScienceGoogle Scholar

  • Ayca, K., G. S. Pozan, and I. Boz. 2012. “Characterization and Photocatalytic Activity of TiO2–ZrO2 Binary Oxide Nanoparticles.” Applied Catalysis B: Environmental 115: 149–58.Web of ScienceGoogle Scholar

  • Babaahamdi-Milani, M., and A. Nezamzadeh-Ejhieh. 2016. “A Comprehensive Study on Photocatalytic Activity of Supported Ni/Pb Sulfide and Oxide Systems onto Natural Zeolite Nanoparticles.” Journal of Hazardous Materials 318: 291–301.CrossrefWeb of ScienceGoogle Scholar

  • Brites-Nóbrega, F. F., A. N. B. Polo, and A. M. Benedetti. 2013. “Evaluation of Photocatalytic Activities of Supported Catalysts on NaX Zeolite or Activated Charcoal.” Journal of Hazardous Materials 263: 61–66.CrossrefWeb of ScienceGoogle Scholar

  • Chong, M. N., B. Jin, C. W. K. Chow, and C. H. Saint, 2010. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research 44: 2997–3027.Web of ScienceCrossrefGoogle Scholar

  • Derikvandi, H., and A. Nezamzadeh-Ejhieh. 2017. “Increased Photocatalytic Activity of NiO and ZnO in Photodegradation of a Model Drug Aqueous Solution: Effect of Coupling, Supporting, Particles Size and Calcination Temperature.” Journal of Hazardous Materials 321: 629–38.CrossrefWeb of ScienceGoogle Scholar

  • Durgakumari, V., M. Subrahmanyam, K. V. Subba Rao, A. Ratnamala, M. Noorjahan, and K. Tanaka. 2002. “An Easy and Efficient Use of TiO2 Supported HZSM-5 and TiO2+ HZSM-5 Zeolite Combinate in the Photodegradation of Aqueous Phenol and P-Chlorophenol.” Applied Catalysis A: General 234: 155–65.CrossrefGoogle Scholar

  • Faria, P. C. C., J. J. M. Orfao, and M. F. R. Pereira. 2004. “Adsorption of Anionic and Cationic Dyes on Activated Carbons with Different Surface Chemistries.” Water Research 38 (8): 2043–52.CrossrefGoogle Scholar

  • Fassier, M., N. Chouard, C. S. Peyratout, D. S. Smith, H. Riegler, D. G. Kurth, C. Ducroquetz, and M. A. Bruneaux. 2009. “Photocatalytic Activity of Oxide Coatings on Fired Clay Substrates.” Journal of the European Ceramic Society 29 (4): 565–70.CrossrefWeb of ScienceGoogle Scholar

  • Ferreira, S. L. C., R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandao, E. G. P Da Silva, and L. A. Portugal. 2007. “Box-Behnken Design: An Alternative for the Optimization of Analytical Methods.” Analytica Chimica Acta 597 (2): 179–86.Web of ScienceCrossrefGoogle Scholar

  • Gomez, S., C. L. Marchena, L. Pizzio, and L. Pierella. 2013. “Preparation and Characterization of TiO2/HZSM-11 Zeolite for Photodegradation of Dichlorvos in Aqueous Solution.” Journal of Hazardous Materials 258: 19–26.Web of ScienceGoogle Scholar

  • Karimi-Shamsabadi, M., and A. Nezamzadeh-Ejhieh. 2016. “Comparative Study on the Increased Photoactivity of Coupled and Supported Manganese-Silver Oxides onto a Natural Zeolite Nano-Particles.” Journal of Molecular Catalysis A: Chemical 418: 103–14.Web of ScienceGoogle Scholar

  • Khatamian, M., and Z. Alaji. 2012. “Efficient Adsorption-Photodegradation of 4-Nitrophenol in Aqueous Solution by Using ZnO/HZSM-5 Nanocomposites.” Desalination 286: 248–53.Web of ScienceCrossrefGoogle Scholar

  • Khatamian, M., B. Divband, and A. Jodaei. 2012. “Degradation of 4-Nitrophenol (4-NP) Using ZnO Nanoparticles Supported on Zeolites and Modeling of Experimental Results by Artificial Neural Networks.” Materials Chemistry and Physics 134: 31–37.CrossrefWeb of ScienceGoogle Scholar

  • Kulprathipanja, S 2010. Zeolites in Industrial Separation and Catalysis, New Jersey, United States: Wiley Only LibraryGoogle Scholar

  • Lim, D. H., J. H. Yoo, and J. W. Ko. 2009. “A Loss Control Management System for the Petrochemical Industry.” Korean Journal of Chemical Engineering 26 (6): 1423–28.CrossrefWeb of ScienceGoogle Scholar

  • Liu, S., M. Lim, and R. Amal. 2014. “TiO2-coated Natural Zeolite: Rapid Humic Acid Adsorption and Effective Photocatalytic Regeneration.” Chemical Engineering Science 105: 46–52.Web of ScienceCrossrefGoogle Scholar

  • Mahdavi, V., and A. Monajemi. 2013. “Statistical Optimization for Oxidation of Ethyl Benzene over Co-Mn/SBA-15 Catalyst by Box-Behnken Design.” Korean Journal of Chemical Engineering 30 (12): 2178–85.Web of ScienceCrossrefGoogle Scholar

  • Maranon, E., M. Ulmanub, Y. Fernandez, I. Anger, and L. Castrillon. 2006. “Removal of Ammonium from Aqueous Solutions with Volcanic Tuff.” Journal of Hazardous Materials 137 (3): 1402–09.CrossrefGoogle Scholar

  • McBarnette, A. 2011. “Treatment of Landfill Leachate via Advanced Oxidation.” Journal American Water Works Association 59 (4): 457–65.Google Scholar

  • Meshram, S., R. Limaye, S. Ghodke, S. Nigam, S. Sonawane, and R. Chikate. 2011. “Continuous Flow Photocatalytic Reactor Using ZnO-Bentonite Nanocomposite for Degradation of Phenol.” Chemical Engineering Journal 172 (2): 1008–15.Web of ScienceCrossrefGoogle Scholar

  • Nezamzadeh-Ejhieh, A., and M. Bahrami. 2015. “Investigation of the Photocatalytic Activity of Supported ZnO–TiO2 on Clinoptilolite Nano-Particles Towards Photodegradation of Wastewater-Contained Phenol.” Desalination and Water Treatment 55 (4): 1096–104.Web of ScienceCrossrefGoogle Scholar

  • Nezamzadeh-Ejhieh, A., and F. Khodabakhshi-Chermahini. 2014. “Incorporated ZnO onto Nano Clinoptilolite Particles as the Active Centers in the Photodegradation of Phenylhydrazine.” Journal of Industrial and Engineering Chemistry 20 (2): 695–704.CrossrefWeb of ScienceGoogle Scholar

  • Nezamzadeh-Ejhieh, A., and S. Khorsandi. 2014. “Photocatalytic Degradation of 4-Nitrophenol with ZnO Supported Nano-Clinoptilolite Zeolite.” Journal of Industrial and Engineering Chemistry 20 (3): 937–46.Web of ScienceCrossrefGoogle Scholar

  • Nosuhi, M., and A. Nezamzadeh-Ejhieh. 2017. “High Catalytic Activity of Fe (Ii)-Clinoptilolite Nanoparticales for Indirect Voltammetric Determination of Dichromate: Experimental Design by Response Surface Methodology (RSM).” Electrochimica Acta 223: 47–62.CrossrefWeb of ScienceGoogle Scholar

  • Omar, F. M., H. Abdul Aziz, and S. Stoll. 2014. “Aggregation and Disaggregation of ZnO Nanoparticles: Influence of pH and Adsorption of Suwannee River Humic Acid.” Science of the Total Environment 468-469: 195–201.CrossrefWeb of ScienceGoogle Scholar

  • Pelaez, M., N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, et al. 2012. “A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications.” Applied Catalysis B: Environmental 125: 331–49.Web of ScienceCrossrefGoogle Scholar

  • Pulido Melián, E., O. González Díaz, J. M. Doña Rodríguez, G. Colón, J. Araña, J. Herrera Melián, J. A. Navío, and J. Pérez Peña. 2009. “ZnO Activation by Using Activated Carbon as a Support: Characterisation and Photoreactivity.” Applied Catalysis A: General 364: 174–81.Web of ScienceCrossrefGoogle Scholar

  • Rahmani, A. R., A. H. Mahvi, A. R. Mesdaghinia, and S. Nasseri. 2004. “Investigation of Ammonia Removal from Polluted Waters by Clinoptilolite Zeolite.” International Journal of Environmental Science and Technology 1 (2): 125–33.CrossrefGoogle Scholar

  • Ray, S., J.A. Lalman, and N. Biswas. 2009. “Using the Box-Benkhen Technique to Statistically Model Phenol Photocatalytic Degradation by Titanium Dioxide Nanoparticles.” Chemical Engineering Journal 150: 15–24.CrossrefWeb of ScienceGoogle Scholar

  • Selda, P. G., and A. Kambur. 2014. “Significant Enhancement of Photocatalytic Activity over Bifunctional ZnO–TiO2 Catalysts for 4-Chlorophenol Degradation.” Chemosphere 105: 152–59.Web of ScienceCrossrefGoogle Scholar

  • Shibuya, S., Y. Sekinea, and I. Mikami. 2015. “Influence of pH and pH Adjustment Conditions on Photocatalytic Oxidation of Aqueous Ammonia under Airflow over Pt-Loaded TiO2.” Applied Catalysis A: General 496: 73–78.CrossrefWeb of ScienceGoogle Scholar

  • Singh, S. K., 2011. Stabilized landfill leachate treatment using physico-chemical treatment processes: coagulation, anion exchange, ozonation, membrane filtration, and adsorption. Dissertation Presented to the Graduate School of the University of Florida.Google Scholar

  • Smičiklas, I. D., S. K. Milonjic´, P. Pfendt, and S. Raicˇevic´. 2000. “The Point of Zero Charge and Sorption of Cadmium (II) and Strontium (II) Ions on Synthetic Hydroxyapatite.” Separation and Purification Technology 18 (3): 185–94.CrossrefGoogle Scholar

  • Sobana, N., and M. Swaminathan. 2007. “Combination Effect of ZnO and Activated Carbon for Solar Assisted Photocatalytic Degradation of Direct Blue 53.” Solar Energy Materials and Solar Cells 91 (8): 727–34.CrossrefWeb of ScienceGoogle Scholar

  • Sun, D., W. Sun, W. Yang, Q. Li, and J. K. Shang. 2015. “Efficient Photocatalytic Removal of Aqueous NH4+–NH3 by Palladium-Modified Nitrogen-Doped Titanium Oxide Nanoparticles under Visible Light Illumination, Even in Weak Alkaline Solutions.” Chemical Engineering Journal 264: 728–34.CrossrefWeb of ScienceGoogle Scholar

  • Tripathi, P., V. C. Srivastava, and A. Kumar. 2009. “Optimization of an Azo Dye Batch Adsorption Parameters Using Box–Behnken Design.” Desalination 249 (3): 1273–79.CrossrefWeb of ScienceGoogle Scholar

  • Vu, T. T., L. Del Rio, T. Valdés-Solís, and G. Marbán. 2013. “Stainless Steel Wire Mesh-Supported ZnO for the Catalytic Photodegradation of Methylene Blue under Ultraviolet Irradiation.” Journal of Hazardous Materials 246: 126–34.Web of ScienceGoogle Scholar

  • Wakte, P., A. Patil, B. Sachin, M. Quazi, S. Jabde, and D. Shinde. 2014. “Optimization of Microwave-Assisted Extraction for Picroside I and Picroside II from Picrorrhiza Kurroa Using Box-Behnken Experimental Design.” Frontiers of Chemical Science and Engineering 8 (4): 445–53.CrossrefWeb of ScienceGoogle Scholar

  • White, J. C., and P. K. Dutta. 2011. “Assembly of Nanoparticles in Zeolite Y for the Photocatalytic Generation of Hydrogen from Water.” The Journal of Physical Chemistry C 115 (7): 2938–47.CrossrefGoogle Scholar

  • Yusof, A. M., L. K. Keat, Z. Ibrahim, Z. A. Majid, and N. A. Nizam. 2010. “Kinetic and Equilibrium Studies of the Removal of Ammonium Ions from Aqueous Solution by Rice Husk Ash-Synthesized Zeolite Y and Powdered and Granulated Forms of Mordenite.” Journal of Hazardous Materials 174: 380–85.Web of ScienceCrossrefGoogle Scholar

  • Zhang, D., H. Xu, M. Xue, W. Xu, and V. Tarasov. 2008. “Preparation and Photocatalytic Kinetics of nano-ZnO Powders by Precipitation Stripping Process.” Frontiers of Chemical Engineering in China 2 (3): 319–24.CrossrefGoogle Scholar

  • Zhu, X., S. R. Castleberry, M. A. Nanny, and E. C. Butler. 2005. “Effects of pH and Catalyst Concentration on Photocatalytic Oxidation of Aqueous Ammonia and Nitrite in Titanium Dioxide Suspensions.” Environmental Science & Technology 39 (10): 3784–91.CrossrefGoogle Scholar

  • Zhu, Y.-P., M. Li, Y.-L. Liu, T.-Z. Ren, and Z.-Y. Yuan. 2014. “Carbon-Doped ZnO Hybridized Homogeneously with Graphitic Carbon Nitride Nanocomposites for Photocatalysis.” The Journal of Physical Chemistry C 118 (20): 10963–71.CrossrefGoogle Scholar

About the article

Received: 2018-02-13

Accepted: 2018-09-15

Revised: 2018-07-07

Published Online: 2018-09-28


Citation Information: International Journal of Chemical Reactor Engineering, 20180042, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0042.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in