Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Entropy Generation and Activation Energy Impact on Radiative Flow of Viscous Fluid in Presence of Binary Chemical Reaction

M. Ijaz Khan / Salman Ahmad / T. Hayat
  • Department of Mathematics, Quaid-I-Azam University45320, Islamabad 44000, Pakistan; Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O.Box 80257, Jeddah 21589, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Alsaedi
  • Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O.Box 80257, Jeddah 21589, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-25 | DOI: https://doi.org/10.1515/ijcre-2018-0045

Abstract

The main theme of this paper is to investigate entropy generation analysis for unsteady three-dimensional flow of viscous (Newtonian) fluid between two horizontal parallel plates. Lower plate is porous and stretching while upper plate squeezed downward. Further effects of nonlinear thermal radiation, viscous dissipation, heat source/sink and activation energy are accounted. Entropy generation rate calculated in terms of thermal radiation, fluid diffusion and fluid friction. Transformations procedure used lead to reduction of PDE’s into ordinary ones. Built-in-Shooting technique is used for the computational analysis. Impacts of different flow variables on temperature, velocity, concentration, volumetric entropy generation and Bejan number are discussed and presented through graphs. Temperature and concentration gradient are discussed numerically. It is examined from obtained results that velocity of liquid particle decays through larger estimation of squeezing parameter. It is also examined that temperature distribution enhances for higher estimation of radiative heat flux. Moreover temperature and concentration gradient increase for larger squeezing parameter.

Keywords: unsteady three dimensional flow; nonlinearthermal radiation; heat source/sink; viscous dissipation; activationenergy; entropy generation analysis

References

  • Bejan, A. 1980. “Second Law Analysis in Heat Transfer.” Energy 5: 720–732.CrossrefWeb of ScienceGoogle Scholar

  • Dalir, N., M. Dehsara, and S. S. Nourazar. 2015. “Entropy Analysis for Magnetohydrodynamic Flow and Heat Transfer of a Jeffrey Nanofluid Over a Stretching Sheet.” Energy 79: 351–362.Web of ScienceCrossrefGoogle Scholar

  • Farooq, M., S. Ahmad, M. Javed, and A. Anjum. 2017. “Analysis of Cattaneo-Christov Heat and Mass Fluxes in the Squeezed Flow Embedded in Porous Medium with Variable Mass Diffusivity.” Results in Physics 7: 3788–3796.Web of ScienceCrossrefGoogle Scholar

  • Farooq, M., M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi, and M. I. Khan. 2016. “MHD Stagnation Point Flow of Viscoelastic Nanofluid with Non-linear Radiation Effects.” Journal of Molecular Liquids 221: 1097–1103.Web of ScienceCrossrefGoogle Scholar

  • Fusi, L., A. Farina, and F. Rosso. 2016. “Squeeze Flow of a Bingham-Type Fluid with Elastic Core.” International Journal of Non-Linear Mechanics 78: 59–65.Web of ScienceCrossrefGoogle Scholar

  • Grimm, R. J. 1976. “Squeezing Flows of Newtonian Liquid Films, an Analysis Including Fluid Inertia.” Applied Scientific Research 32: 149–166.CrossrefGoogle Scholar

  • Guo, J., M. Xu, J. Cai, and X. Huai. 2011. “Viscous Dissipation Effect on Entropy Generation in Curved Square Microchannels.” Energy 36: 5416–5423.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2017a. “Non-Darcy Forchheimer Flow of Ferromagnetic Second Grade Fluid.” Results Physics 7: 3419–3424.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018a. “A Frame Work for Heat Generation/Absorption and Modified Homogeneous-Heterogeneous Reaction in Flow Based on Non-Darcy-Forchheimer Medium. Nuclear Engineering and Technology (In press).Web of Science

  • Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018b. “Exploring Magnetic Dipole Contribution on Radiative Flow of Ferromagnetic Williamson Fluid.” Results Physics 8: 545–551.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018c. “Modeling and Analyzing Flow of Third Grade Nanofluid Due to Rotating Stretchable Disk with Chemical Reaction and Heat Source.” Physica B: Condensed Matter 537: 116–126.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., S. Ahmad, M. I. Khan, and A. Alsaedi. 2018d. “Simulation of Ferromagnetic Nanomaterial Flow of Maxwell Fluid.” Results Physics 8: 34–40.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., M. I. Khan, M. Farooq, A. Alsaedi, and M. I. Khan. 2017b. “Thermally Stratified Stretching Flow with Cattaneo-Christov Heat Flux.” International Journal of Heat and Mass Transfer 106: 289–294.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. I. Khan, M. Farooq, A. Alsaedi, and T. Yasmeen. 2017c. “Impact of Marangoni Convection in the Flow of Carbon–Water Nanofluid with Thermal Radiation.” International Journal of Heat and Mass Transfer 106: 810–815.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. I. Khan, M. Farooq, T. Yasmeen, and A. Alsaedi. 2016a. “Water-Carbon Nanofluid Flow with Variable Heat Flux by a Thin Needle.” Journal of Molecular Liquids 224: 786–791.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. I. Khan, M. Tamoor, M. Waqas, and A. Alsaedi. 2017d. “Numerical Simulation of Heat Transfer in MHD Stagnation Point Flow of Cross Fluid Model Towards a Stretched Surface.” Results Physics 7: 1824–1827.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. I. Khan, S. Qayyum, and A. Alsaedi. 2018e. “Entropy Generation in Flow with Silver and Copper Nanoparticles.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 539: 335-346.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., K. Muhammad, M. Farooq, and A. Alsaedi. 2016b. “Squeezed Flow Subject to Cattaneo-Christov Heat Flux and Rotating Frame.” Journal of Molecular Liquids 220: 216–222.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., H. Nazar, M. Imtiaz, A. Alsaedi, and M. Ayub. 2017e. “Axisymmetric Squeezing Flow of Third Grade Fluid in Presence of Convective Conditions.” Chinese Journal of Physics 55: 738–754.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. Rafiq, B. Ahmad, and S. Asghar. 2017f. “Entropy Generation Analysis for Peristaltic Flow of Nanoparticles in a Rotating Frame.” International Journal of Heat and Mass Transfer 108: 1775–1786.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., S. Ullah, M. I. Khan, and A. Alsaedi. 2018f. “On Framing Potential Features of SWCNTs and MWCNTs in Mixed Convective Flow.” Results Physics 8: 357–364.Web of ScienceCrossrefGoogle Scholar

  • Khan, N. B., Z. Ibrahim, M. F. Javed, and M. Jameel. 2017a. “Numerical Investigation of the Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder at High Reynolds Number (Re = 104) and Low Mass Ratio Using the RANS Code. Plos One 12: e0185832.CrossrefGoogle Scholar

  • Khan, N. B., Z. Ibrahim, and M. F. Javed. “Numerical Investigation of the Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder Having Low Mass Rati Using the RANS Code.” The 2017 Word Congress on Advances in Structural Engineering and Mechanics, (ASEM17) ILSAN (Seoul), Korea.

  • Khan, N. B., Z. Ibrahim, M. I. Khan, T. Hayat, and M. F. Javed. 2018. “VIV Study of an Elastically Mounted Cylinder Having Low Mass-Damping Ratio Using RANS Model.” International Journal of Heat and Mass Transfer 121: 309–314.Web of ScienceCrossrefGoogle Scholar

  • Khan, N. B., and Z. Ibrahim. 2017. “Numerical Investigation of Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder with One-Degree of Freedom at High Reynolds Number Using Different Turbulent Models, Proceed. Proceedings of the Institution of Mechanical Engineers Part M .CrossrefGoogle Scholar

  • Khan, M. I., M. Waqas, T. Hayat, and A. Alsaedi. 2017b. “A Comparative Study of Casson Fluid with Homogeneous-Heterogeneous Reactions.” Journal of Colloid and Interface Science 498: 85–90.Web of ScienceCrossrefGoogle Scholar

  • Khan, M. I., M. Waqas, T. Hayat, and A. Alsaedi. 2017c. “A Comparative Study of Casson Fluid with Homogeneous-Heterogeneous Reactions.” Journal of Colloid and Interface Science 498: 85–90.Web of ScienceCrossrefGoogle Scholar

  • Li, X., and A. Faghri. 2011 “Local Entropy Generation Analysis on Passive High-Concentration DMFCs (Direct Methanol Fuel Cell) with Different Cell Structures.” Energy 36: 403–414.Web of ScienceCrossrefGoogle Scholar

  • Munawar, S., A. Mehmood, and A. Ali. 2012. “Three-Dimensional Squeezing Flow in a Rotating Channel of Lower Stretching Porous Wall.” Journal of Computational and Applied Mathematics 64: 1575–1586.CrossrefGoogle Scholar

  • Nouri, D., M. Pasandideh-Fard, M. J. Oboodi, O. Mahian, and A. Z. Sahin. 2018a. “Entropy Generation Analysis of Nanofluid Flow Over a Spherical Heat Source Inside a Channel with Sudden Expansion and Contraction.” International Journal of Heat and Mass Transfer 116: 1036–1043.Web of ScienceCrossrefGoogle Scholar

  • Sheikholeslami, M., D. D. Ganji, and H. R. Ashorynejad. 2013. “Investigation of Squeezing Unsteady Nanofluid Flow Using ADM.” Powder Technology 239: 259–265.CrossrefWeb of ScienceGoogle Scholar

  • Stefan, M. J. 1874. “Versuch Uber die scheinbare Adhesion.” Akad. Wiss. Math-Natur 69: 713–721.Google Scholar

  • Van der Ham, L. V., J. Gross, and S. Kjelstrup. 2011. “Two Performance Indicators for the Characterization of the Entropy Production in A Process Unit.” Energy 36: 3727–3732.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-03-02

Revised: 2018-04-04

Accepted: 2018-07-07

Published Online: 2018-08-25


Citation Information: International Journal of Chemical Reactor Engineering, Volume 16, Issue 9, 20180045, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0045.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in