Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …

Study of Permissible Flow Rate and Mixing Efficiency of the Micromixer Devices

K Karthikeyan
  • Corresponding author
  • Centre of Excellence in MEMS & Microfluidics, Rajalakshmi Engineering College, Chennai 602105, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L Sujatha
  • Centre of Excellence in MEMS & Microfluidics, Rajalakshmi Engineering College, Chennai 602105, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-25 | DOI: https://doi.org/10.1515/ijcre-2018-0047


This paper deals with design, simulation, fabrication, analysis of mixing efficiency and thin film bonding stability of the micromixer devices with different flow rates used for lab on chip applications. The objective of the present study is to achieve complete mixing with low flow rate and less pressure drop in low cost polymer microfluidic devices. This paper emphasis the design, simulation and fabrication of straight channel micromixer, serpentine channel micromixer with and without quadrant shaped grooves to study the mixing behavior by the effect of structural dimensions of the microfluidic channel at different flow rates. The designed micromixers were tested with varying rates of flow such as 1, 10, 25, 50, 75 and 100 µL/min.

Keywords: microfluidics; micromixer; permissible flow rate; bonding stability; lab-on-chip


  • Adam, Tijjani, Uda Hashim, Thikra S. Dhahi, and Muhammad N. A. Ud. 2014. “Fabrication of Micromixer for Life Sciences Applications.” Ieee 15 (3): 2166–662.Google Scholar

  • Afzal, Arshad, and Kwang-Yong Kim. 2014. “Three-Objective Optimization of a Staggered Herringbone Micromixer.” Sensors and Actuators B 192: 350–60.Web of ScienceCrossrefGoogle Scholar

  • Alam, Afroz, Arshad Afzal, and Kwang-Yong Kim. 2014. “Mixing Performance of a Planar Micromixer with Circular Obstructions in a Curved Microchannel.” Chemical Engineering Research and Design 9 (2): 423–34.Web of ScienceGoogle Scholar

  • Cai, Gaozhe, Li Xue, Huilin Zhang, and Jianhan Lin. 2017. “A Review on Micromixers.” Micromachines 8: 274–301.Web of ScienceCrossrefGoogle Scholar

  • Cha, unghun, Jinseok Kim, Suk-Kyu Ryu, Jungyul Park, Yongwon Jeong, Sewan Park, Sukho Park, Hyeon Cheol Kim, and Kukjin Chun. 2006. “A Highly Efficient 3D Micromixer Using Soft PDMS Bonding.” Journal of Micromechanics and Microengineering 16: 1778–82.CrossrefGoogle Scholar

  • Chen, Xueye, and Xiaolei Wang. 2015. “Optimized Modular Design and Experiment for Staggered Herringbone Chaotic Micromixer.” International Journal of Chemical Reactor Engineering 13 (3): 305–09.Web of ScienceGoogle Scholar

  • Chew, Y.T., H.M. Xia, and C. Shu, 2007. “Fluid Micromixing Technology and Its Applications for Biological and Chemical Processes.” Biomed 06, IFMBE Proceedings 15, 16–20. Springer-Verlag Berlin Heidelberg.Google Scholar

  • Français, Olivier, Marie Caroline Jullien, Lionel Rousseau, Patrick Poulichet, Serge Desportes, Assia Chouai, Jean Pierre Lefevre, and Jacques Delaire, 2006. “An Active Chaotic Micromixer Integrating Thermal Actuation Associating PDMS and Silicon Micro Technology.” DTIP of MEMS and MOEMS, 26–28.Google Scholar

  • Jen, Chun-Ping, Chung-Yi Wu, Yu-Cheng Lin, and Ching-Yi Wub. 2003. “Design and Simulation of the Micromixer with Chaotic Advection in Twisted Microchannels.” Lab on a Chip 3: 77–81.CrossrefGoogle Scholar

  • Jeong, Gi Seok, Seok Chung, Chang-Beom Kima, and Sang-Hoon Lee. 2010. “Applications of Micromixing Technology.” RSC Analyst 135: 460–73.CrossrefGoogle Scholar

  • Kapilmanoharan, Prabhatranjan, and Ramesh R. Lekurwale. 2014. “Design & Development of a Micro-Mixer-Reactor for a LOC Application.” International Journal of Advances in Science Engineering and Technology 2: 4.Google Scholar

  • Karthikeyan, K., and L. Sujatha, 2017. “Design and Fabrication of Microfluidic Device for Mercury Ions Detection in Water.” IEEE International Conference on Nextgen Electronic Technologie. Silicon to Software (ICNETS2), IEEE Proceedings, 218–21.Google Scholar

  • Karthikeyan, K., L. Sujatha, and N. M. Sudharsan. 2017. “Numerical Modeling and Parametric Optimization of Micromixer for Low Diffusivity Fluids.” International Journal of Chemical Reactor Engineering 16 (3). 20160231.Web of ScienceGoogle Scholar

  • Kuo, u-Nan, and Li-Ren Jiang. 2014. “Design Optimization of Micromixer with Square-Wave Microchannel on Compact Disk Microfluidic Platform.” Microsystem Technologies 20: 91–99.CrossrefWeb of ScienceGoogle Scholar

  • Madhumitha, R., S. Arunkumar, K. K. Karthikeyan, S. Krishnah, V. Ravichandran, and M. Venkatesan. 2017. “Computational Modeling and Analysis of Fluid Structure Interaction in Micromixers with Deformable Baffle.” International Journal of Chemical Reactor Engineering 15 (3). 20160121.Web of ScienceGoogle Scholar

  • Meng, Hui-Bo, Ming-Yuan Song, Yan-Fang Yu*, Xiu-Hui Jiang, Zong-Yong Wang, and Wu Jian-Hua. 2016. “Enhancement of Laminar Flow and Mixing Performance in a Lightnin Static Mixer.” International Journal of Chemical Reactor Engineering 15 (3). 20160112.Web of ScienceGoogle Scholar

  • Nimafar, Mohammad, Vladimir Viktorov, and Matteo Martinelli. 2012. “Experimental Investigation of Split and Recombination Micromixer in Confront with Basic T- and O- Type Micromixers.” International Journal of Mechanics and Applications 2 (5): 61–69.CrossrefGoogle Scholar

  • Oberti, Stefano, Adrian Neild, and Tuck Wah Nga. 2009. “Microfluidic Mixing under Low Frequency Vibration.” Lab on a Chip 9: 1435–38.CrossrefWeb of ScienceGoogle Scholar

  • Saragih, Agung Shamsuddin, and Tae Jo Ko. 2009. “Fabrication of Passive Glass Micromixer with Third-Dimensional Feature by Employing SU8 Mask on Micro-Abrasive Jet Machining.” The International Journal of Advanced Manufacturing Technology 42 (6): 474–81.Web of ScienceCrossrefGoogle Scholar

  • Svasek, P., E. Svasek, B. Lendl, and M. Vellekoop. 2004. “Fabrication of Miniaturized Fluidic Devices Using SU-8 Based Lithography and Low Temperature Wafer Bonding.” Sensors and Actuators A 115: 591–99.CrossrefGoogle Scholar

  • Tan, Hsih Yin, Weng Keong Loke, Yong Teng Tana, and Nam-Trung Nguyen. 2008. “A Lab-On-A-Chip for Detection of Nerve Agent Sarin in Blood.” Lab on a Chip 8: 885–91.CrossrefWeb of ScienceGoogle Scholar

  • Tseng, Wei-Kuo, Jr-Lung Lin, Wang-Chou Sung, Shu-Hui Chen, and Gwo-Bin Lee. 2006. “Active Micromixers Using Surface Acoustic Waves on Y-Cut 128◦. LiNbO3.” Journal of Micromechanics and Microengineering 16: 539–48.CrossrefGoogle Scholar

  • Tung, Kai-Yang, Li Chih-Chieh, and Jing-Tang Yang. 2009. “Mixing and Hydrodynamic Analysis of a Droplet in a Planar Serpentine Micromixer.” Microfluid Nanofluid 7: 545–57.CrossrefWeb of ScienceGoogle Scholar

  • Wang, Chin-Tsan, Yan-Ming Chen, and Shih-Syun Chen. 2016. “Heart-Like Micro-Flow Mixer.” International Journal of Chemical Reactor Engineering 14 (1): 343–49.Web of ScienceGoogle Scholar

  • Wang, Chin-Tsan, Yan-Ming Chen, Pei-An Hong, and Yi-Ta Wang. 2014. “Tesla Valves in Micromixers.” International Journal of Chemical Reactor Engineering 12 (1): 397–403.Web of ScienceGoogle Scholar

  • Wang, Yiou, Benjamin T. Jiang Zhe, F. Chung, and Prashanta Dutta. 2008. “A Rapid Magnetic Particle Driven Micromixer.” Microfluid Nanofluid 4: 375–89.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-03-03

Accepted: 2018-09-15

Revised: 2018-06-24

Published Online: 2018-09-25

This work was supported by Defence Research and Development Organisation, Funder Id: 10.13039/501100001849, Grant Number: ERIP/ER/1204662/M/01/1498.

Citation Information: International Journal of Chemical Reactor Engineering, 20180047, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0047.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in