Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Effect of Chemical Reaction on Maxwell Nanofluid Slip Flow over a Stretching Sheet

B.C. Prasannakumara
  • Corresponding author
  • Department of Mathematics, Government First Grade College, Chikkamagaluru, Koppa 577126, Karnataka, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Gnaneswara Reddy / M.V.V.N.L. Sudha Rani / M.R. Krishnamurthy
Published Online: 2018-09-11 | DOI: https://doi.org/10.1515/ijcre-2018-0065

Abstract

The main focus of the present study is to analyze the effect of chemical reaction and nonlinear thermal radiation on Maxwell fluid suspended with nanoparticles through a porous medium along horizontal stretching sheet. The governing partial differential equations of the defined problem are reduced into a set of nonlinear ordinary differential equations using adequate similarity transformations. Obtained set of similarity equations are then solved with the help of efficient numerical method fourth fifth order Runge-Kutta-Fehlberg method. The effects of different flow pertinent parameters on the flow fields like velocity, temperature, and concentration are shown in the form of graphs and tables. The detailed analysis of the problem is carried out based on the plotted graphs and tables. It is observed that an increase in the radiation parameter, temperature ratio parameter, Brownian motion parameter and thermophoretic parameter lead to increase in the thermal boundary layer thickness but quite opposite phenomenon can be seen for the effect of Prandtl number.

Keywords: chemical reaction; radiation heat transfer; horizontal stretching sheet; maxwell nanofluid; porous medium

References

  • Abbas, Z., M. Naveed, M. Naeem, and Q. M. Z. Zia. 2018. “Analytical Investigation of a Maxwell Fluid Flow with Radiation in an Axisymmetric Semi-Porous Channel by Parameterized Perturbation Method.” Journal Brazilian Social Mechanisms Sciences Engineering 40: 65.CrossrefGoogle Scholar

  • Archana, M., B.J. Gireesha, P. Venkatesh, and M. Gnaneswara Reddy. 2017. “Influence of Nonlinear Thermal Radiation and Magnetic Field on Three-Dimensional Flow of a Maxwell Nanofluid.” Journal of Nanofluids 6 (2): 232–242.Web of ScienceCrossrefGoogle Scholar

  • Garoosi, F., L. Jahanshaloo, M. M. Rashidi, A. Badakhsh, and M. E. Ali. 2015. “Numerical Simulation of Natural Convection of the Nanofluid in Heat Exchangers Using a Buongiorno Model.” Applied Mathematics and Computation 254: 183–203.CrossrefWeb of ScienceGoogle Scholar

  • Gnaneswara Reddy, M., B.C. Prasannakumara, and O.D. Makinde. 2017. “Cross Diffusion Impacts on Hydromagnetic Radiative Peristaltic Carreau-CassonNanofluids Flow in an Irregular Channel.” Defect and Diffusion Forum 3776: 2–83.Google Scholar

  • Gnaneswara Reddy, M, M Sudha Rani, and O. D. Makinde. 2017. “Effects of Nonlinear Thermal Radiation and Thermo-Diffusion on MHD Carreau Fluid Flow past a Stretching Surface with Slip.” Diffusion Foundations 11: 57–71.CrossrefGoogle Scholar

  • Gnaneswara Reddy, M., P. VijayaKumari, and P. Padma. 2018. “Effect of Thermal Radiation on MHD Casson Nano Fluid over a Cylinder.” Journal of Nanofluids 7 (3): 428–438.CrossrefWeb of ScienceGoogle Scholar

  • Gorla, R.S.R., and I. Sidawi. 1994. “Free Convection on a Vertical stretching Surface with Suction and Blowing.” Applied Science Researcher 52,: 247–257.CrossrefGoogle Scholar

  • Goyal, Mania, and Rama Bhargava. 2014. “Boundary Layer Flow and Heat Transfer of Viscoelastic Nanofluids past a Stretching Sheet with Partial Slip Conditions.” Applied Nanoscience 4 (6): 761–767.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., M. Ijaz Khan, M. Farooq, A. Alsaedi, M. Waqas, and Tabassam Yasmeen. 2016a. “Impact of Cattaneo–Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid over a Variable Thicked Surface.” International Journal of Heat and Mass Transfer 99: 702–710.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. Ijaz Khan, M. Farooq, Numra Gulla, and A. Alsaedi. 2016b. “Unsteady Three-Dimensional Mixed Convection Flow with Variable Viscosity and Thermal Conductivity.” Journal of Molecular Liquids 223: 1297–1310.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. Ijaz Khan, M. Farooq, Tabassam Yasmeende, and A. Alsaedi. 2016c. “Stagnation Point Flow with Cattaneo-Christov Heat Flux and Homogeneous-Heterogeneous Reactions.” Journal of Molecular Liquids 220: 49–55.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., M. Ijaz Khan, M. Waqasa, A. Alsaedi, and Muhammad Imran Khan. 2017a. “Radiative Flow of Micropolarnanofluid Accounting Thermophoresis and Brownian Moment.” International Journal of Hydrogen Energy 42 (26): 16821–16833.CrossrefGoogle Scholar

  • Hayat, T., S. Qayyum, M. Waqas, and Ahmed Alsaedi. 2018a. “Unsteady Stagnatsion Point Flow of Oldroyd-B Nanofluid with Heat Generation/Absorption and Nonlinear Thermal Radiation.” Journal Brazilian Social Mechanisms Sciences Engineering 40: 84.CrossrefGoogle Scholar

  • Hayat, T., Siraj Ullaha, M. Ijaz Khan, A. Alsaedi, and Q. M. Zaigham Zia. 2018b. “Non-Darcy Flow of Water-Based Carbon Nanotubes with Nonlinear Radiation and Heat Generation/Absorption.” Results in Physics 8: 473–480.Web of ScienceCrossrefGoogle Scholar

  • Hayat, Tasawar, Muhammad Ijaz Khan, Sumaira Qayyum, and Ahmed Alsaedi. 2017b. “Modern Developments about Statistical Declaration and Probable Error for Skin Friction and Nusselt Number with Copper and Silver Nanoparticles.” Chinese Journal of Physics 55 (6): 2501–2513.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, Tasawar, Sumaira Qayyum, Muhammad Ijaz Khan, and Ahmed Alsaedi. 2018c. “Entropy Generation in Magnetohydrodynamic Radiative Flow Due to Rotating Disk in Presence of Viscous Dissipation and Joule Heating.” Physics of Fluids 30:017101. .CrossrefWeb of ScienceGoogle Scholar

  • Hayatab, Tasawar, Muhammad Ijaz Khana, Sumaira Qayyuma, and Ahmed Alsaedi. 2018. “Entropy Generation in Flow with Silver and Copper Nanoparticles.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 539: 335–346.Web of ScienceCrossrefGoogle Scholar

  • Ibrahim, Wubshet, and Bhandari Shankar. 2013. “MHD Boundary Layer Flow and Heat Transfer of a Nanofluid past a Permeable Stretching Sheet with Velocity, Thermal and Solutal Slip Boundary Conditions.” Computers&Fluids 75: 1–10.Web of ScienceGoogle Scholar

  • Khan, Kashif Ali, Asma Rashid Butt, and Nauman Raza. 2018. “Effects of Heat and Mass Transfer on Unsteady Boundary Layer Flow of a Chemical Reacting Casson Fluid.” Results in Physics 8: 610–620.Web of ScienceCrossrefGoogle Scholar

  • Khan, M., L. Ahmad, and W.A Khan. 2017. “Numerically Framing the Impact of Radiation on Magnetonanoparticles for 3D Sisko Fluid Flow.” Journal Brazilian Social Mechanisms Sciences Engineering 39: 4475.CrossrefGoogle Scholar

  • Khan, Muhammad Imran, M. Ijaz Khan, M. Waqas, T. Hayat, and A. Alsaedi. 2017. “Chemically Reactive Flow of Maxwell Liquid Due to Variable Thicked Surface.” International Communications in Heat and Mass Transfer 86: 231–238.Web of ScienceCrossrefGoogle Scholar

  • Kumar, K. Ganesh, M. Archana, B.J. Gireesha, M.R. Krishanamurthy, and N.G. Rudraswamy. 2018. “Cross Diffusion Effect on MHD Mixed Convection Flow of Nonlinear Radiative Heat and Mass Transfer of Casson Fluid over a Vertical Plate.” Results in Physics. 8: 694–701.Web of ScienceCrossrefGoogle Scholar

  • Liu, Lin, and Fawang Liu. 2018. “Boundary Layer Flow of Fractional Maxwell Fluid over a Stretching Sheet with Variable Thickness.” Applied Mathematics Letters 79: 92–99.CrossrefWeb of ScienceGoogle Scholar

  • Liu, Yaqing, and Boling Guo. 2017. “Effects of Second-Order Slip on the Flow of a Fractional Maxwell MHD Fluid.” Journal of the Association of Arab Universities for Basic and Applied Sciences 24: 232–241.Google Scholar

  • Mahathaa, B. K., R. Nandkeolyar, G. Nagaraju, and M. Das. 2015. “MHD Stagnation Point Flow of a Nanofluid with Velocity Slip and Non-Linear Radiation and Newtonian Heating.” Procedia Engineering 127: 1010–1017.CrossrefGoogle Scholar

  • Makinde, O.D., W.A. Khan, and Z.H. Khan. 2016. “Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat”, Proc IMechE Part E: J Process Mechanical Engineering, 231 (4): 695–703.Google Scholar

  • Mi, Khan, M. Waqas, T. Hayat, and A. Alsaedi. 2017. “A Comparative Study of Casson Fluid with Homogeneous-Heterogeneous Reactions.” J Colloid Interface Sci 498: 85–90. .CrossrefWeb of ScienceGoogle Scholar

  • Mishra, S.R., and M.M. Bhatti. 2017. “Simultaneous Effects of Chemical Reaction and Ohmic Heating with Heat and Mass Transfer over A Stretching Surface: A Numerical Study.” Chinese Journal of Chemical Engineering 25: 1137–1142.Web of ScienceCrossrefGoogle Scholar

  • Nadeem, S, and S.T Hussain. 2013. “Flow and Heat Transfer Analysis of Williamson Nanofluid.” Applications Nanosci 4 (8): 1005–1012.Google Scholar

  • Nasr, Abdelaziz. 2018. “Heat and Mass Transfer for Liquid Film Condensation along a Vertical Channel Covered with a Thin Porous Layer.” International Journal of Thermal Sciences 124,: 288–299.Web of ScienceCrossrefGoogle Scholar

  • Pantokratoras, A., and T. Fang. 2013. “Sakiadis Flow with Nonlinear Rosseland Thermal Radiation.” Physical Scr 87: 015703.CrossrefGoogle Scholar

  • Prasanna Kumara, B.C., B.J. Gireesha, R.S.R. Gorla, and M.R. Krishnamurthy. 2016. “Effects of Chemical Reaction and Nonlinear Thermal Radiation on Williamson Nanofluid Slip Flow over a Stretching Sheet Embedded in a Porous Medium.” Journal of Aerospace Engineering 29 (5). 1–10.Web of ScienceGoogle Scholar

  • Qayyum, Sajid, T. Hayat, Sabir Ali Shehzad, and A. Alsaedi. 2018. “Mixed Convection and Heat Generation/Absorption Aspects in MHD Flow of Tangent-Hyperbolic Nanoliquid with Newtonian Heat/Mass Transfer.” Radiation Physics and Chemistry 144: 396–404.Web of ScienceCrossrefGoogle Scholar

  • Ramana Reddy, J. V., V. Sugunamma, and N. Sandeep. 2016. “Effect of Aligned Magnetic Field on Casson Fluid Flow past a Vertical Oscillating Plate in Porous Medium.” Journal of Advanced Physics 5: 1–7.Web of ScienceGoogle Scholar

  • Ramesh, G.K., B.C. Prasanna Kumara, B.J. Gireesha, S.A. Shehzad, and F.M. Abbasi. 2017. “Three Dimensional Flow of Maxwell Fluid with Suspended Nanoparticles past a Bidirectional Porous Stretching Surface with Thermal Radiation.” Thermal Science and Engineering Progress 1,: 6–14.CrossrefGoogle Scholar

  • Rashada, A.M., M.M. Rashidibc, Giulio Lorenzinid, Sameh E. Ahmede, and Abdelraheem M. Aly. 2017. “Magnetic Field and Internal Heat Generation Effects on the Free Convection in a Rectangular Cavity Filled with a Porous Medium Saturated with Cu–Water Nanofluid.” International Journal of Heat and Mass Transfer 104: 878–889.Web of ScienceCrossrefGoogle Scholar

  • Rashidi, M.M., S. Abelman, and N. Freidooni Mehra. 2013. “Entropy Generation in Steady MHD Flow Due to a Rotating Porous Disk in a Nanofluid.” International Journal of Heat and Mass Transfer 62: 515–525.CrossrefWeb of ScienceGoogle Scholar

  • Rashidi, M. M., N Freidoonimehr, A. Hosseini, O. Anwar Bég, and T.-K. Hung. 2014. “Homotopy Simulation of Nanofluid Dynamics from a Non-Linearly Stretching Isothermal Permeable Sheet with Transpiration.” Meccanica 49 (2): 469–482.CrossrefWeb of ScienceGoogle Scholar

  • Rosseland, S. 1931. Astrophysik und atom-theoretischeGrundlagen. 41–44. Berlin: Springer Verlag.Google Scholar

  • Sheikholeslami, M., M.M. Rashidi, and D.D. Ganji. 2015. “Effect of Non-Uniform Magnetic Field on Forced Convection Heat Transfer of Fe3O4–Water Nanofluid.” Computer Methods in Applied Mechanics and Engineering 294: 299–312.CrossrefWeb of ScienceGoogle Scholar

  • Waqas, M., M. Ijaz Khan, T. Hayat, A. Alsaedi, and M. Imran Khan. 2017. “Nonlinear Thermal Radiation in Flow Induced by a Slendering Surface Accounting Thermophoresis and Brownian Diffusion.” European Physical Journal Plus 132: .CrossrefWeb of ScienceGoogle Scholar

  • Zhang, Yan, Haojie Zhao, Fawang Liu, and Yu Bai. 2018. “Analytical and Numerical Solutions of the Unsteady 2D Flow of MHD Fractional Maxwell Fluid Induced by Variable Pressure Gradient.” Computers & Mathematics with Applications. 75 (3): 96–980.Web of ScienceGoogle Scholar

About the article

Received: 2018-03-22

Accepted: 2018-07-09

Revised: 2018-07-07

Published Online: 2018-09-11


Declaration on conflict of interest: We warrant that the article is the Authorsʼ original work. We warrant that the article has not received prior publication and is not under consideration for publication elsewhere.


Citation Information: International Journal of Chemical Reactor Engineering, 20180065, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0065.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in