Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Optimization of a Treatment System of Wastewater Streams for Electrochemical Cr(VI) Reduction: Selective versus Centralized Treatment

Adrián López-Yañez
  • Departamento de Energía, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, Azcapotzalco, 02200, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge Ramirez-Muñoz
  • Corresponding author
  • Departamento de Energía, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, Azcapotzalco, 02200, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alejandro Alonso
  • CONACYT, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa, Tamaulipas, Azcapotzalco, 02200, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis G. Cota
  • Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, 07360, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jhonny Pérez Montiel
  • Grupo de Investigación GISA, Facultad de Ingeniería, Universidad de La Guajira, Km 5 Vía a Maicao, Riohacha-Colombia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-18 | DOI: https://doi.org/10.1515/ijcre-2018-0076

Abstract

The problem of the optimization of selective treatment systems of wastewater streams contaminated with hexavalent chromium [Cr(VI)] is investigated. In order to comply with the Mexican environmental norm of Cr(VI) for treated wastewater streams at minimum cost, a nonlinear programming (NLP) model for the electrochemical reduction of hexavalent chromium to trivalent chromium was developed. The model incorporates a variable reaction rate, which is a function of the Cr(VI) concentration and the electrical current density of the electrochemical process. For this purpose, a basic superstructure of the effluent treatment is proposed. The superstructure is composed of three continuous electrochemical reactors without recirculation, and it may produce either a series and/or parallel design topology. The NLP model was used to minimize the objective function, defined as the total annual cost (TAC), which includes the capital cost of each electrochemical reactor, the electrical energy cost and the cost of the treatment of the wastewater streams. In order to investigate the solution set of the proposed NLP model, i. e., to improve the possibilities of obtaining optimum solutions based on economic criteria, a multi-start algorithm was implemented. Two example problems are used to show the versatility of the model and different local optimal solutions were obtained for each case study. The results show that a selective treatment of wastewater streams based on the search of local optimal solutions yields significant savings with respect to a centralized treatment design.

Keywords: optimum treatment design; nonlinear programming model; selective treatment; wastewater treatment; electrochemical reactor

References

  • Alonso, A., G. Lapidus, and I. González. 2008. “Selective Silver Electroseparation from Ammoniacal Thiosulfate Leaching Solutions Using a Rotating Cylinder Electrode Reactor (RCE).” Hydrometallurgy 92 (3–4): 115–23.CrossrefWeb of ScienceGoogle Scholar

  • Alonso, A., G. Lapidus, and I. A. González. 2007. “Strategy to Determine the Potential Interval for Selective Silver Electrodeposition from Ammoniacal Thiosulfate Solutions.” Hydrometallurgy 85 (2–4): 144–53.Web of ScienceCrossrefGoogle Scholar

  • Alva, A., A. Kokossis, and R. Smith. 2007. “The Design of Water-Using Systems in Petroleum Refining Using a Water-Pinch Decomposition.” Chemical Engineering Journal 128 (1): 33–46.CrossrefWeb of ScienceGoogle Scholar

  • Barrera, C., M. Palomar, M. Romero, and S. Martínez. 2003. “Chemical and Electrochemical Considerations on the Removal Process of Hexavalent Chromium from Aqueous Media.” Journal of Applied Electrochemistry 33 (1): 61–71.CrossrefGoogle Scholar

  • Brooke, A., D. Kendrick, A. Meeraus, and R. Raman. 2012. GAMS: A User's Guide. Estados Unidos de América: GAMS Development Corporation.Google Scholar

  • Chen, X., G. Chen, and L. Yue. 2002. “Novel Electrode System for Electroflotation of Wastewater.” Enviromental Science Technology 36 (4): 778–83.CrossrefGoogle Scholar

  • Cheng, C., and L. Jui. 2008. “A Graphical Technique for the Design of Water-Using Networks in Batch Processes.” Chemical Engineering Science 63 (14): 3740–54.Web of ScienceCrossrefGoogle Scholar

  • Faria, D., and M. Bagajewicz. 2009. “Profit-Based Grassroots Design and Retrofit of Water Networks in Process Plants.” Computers and Chemical Engineering 33 (2): 436–53.CrossrefGoogle Scholar

  • Galán, B., and I.E. Grossmann. 1999. “Optimization Strategies for the Design and Synthesis of Distributed Wastewater Treatment Networks.” Computers & Chemical Engineering 23 (Supplement): S161–64.CrossrefGoogle Scholar

  • González, M. M. 2013. Introducción a La Ingeniería De Procesos. México: Limusa.Google Scholar

  • Grossmann, I.E, J.A. Caballero, and H. Yeomans. 1999. “Mathematical Programming Approaches to the Synthesis of Chemical Process Systems.” Korean Journal of Chemical Engineering 16 (4): 407–26.CrossrefGoogle Scholar

  • Hernández-Suárez, R. 2004. "Optimización y síntesis de redes de agua asociadas a plantas de proceso." PhD Thesis (In Spanish), Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-México (2004).Google Scholar

  • Jiménez, A., J. Lona, J. Ponce, and M. Halwagi. 2014. “An MINLP Model for the Simultaneous Integration of Energy, Mass and Properties in Water Networks.” Computers and Chemical Engineering. 71: 52–66.CrossrefGoogle Scholar

  • Martínez-Delgadillo, S., and H. Mollinedo-Ponce. 2010. "Mendoza-Escamilla V, and Barrera-Díaz C. Residence Time Distribution and Back-Mixing in a Tubular Electrochemical Reactor Operated with Different Inlet Flow Velocities, to Remove Cr(VI) from Wastewater." Chemical Engineering Journal 165 (3): 776–83.CrossrefGoogle Scholar

  • Martinez-Delgadillo, S., H. Mollinedo-Ponce, V. Mendoza-Escamilla, C. Gutiérrez-Torres, J.J. Jiménez-Bernal, and C. Barrera-Diaz. 2012. “Performance Evaluation of an Electrochemical Reactor Used to Reduce Cr(VI) from Aqueous Media Applying CFD Simulations.” Journal of Cleaner Production 34: 120–24.Web of ScienceCrossrefGoogle Scholar

  • Molokwane, P., and E.M.N. Chirwa. 2011. “Modelling Biological Cr(Vi) Reduction in Aquifer Microcosm Column Systems Barrier.” Chemical Engineering Transactions 24: 1051–56.Google Scholar

  • Núñez-Serna, R.I., and J.M. Zamora. 2016. “NLP Model and Stochastic Multi-Start Optimization Approach for Heat Exchanger Networks.” Applied Thermal Engineering 94: 458–71.CrossrefWeb of ScienceGoogle Scholar

  • Owlad, M, M. Kheireddine, W. Wan-Daud, and S. Baroutian. 2009. “Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review.” Water Air Soil Pollution 200 (1–4): 59–77.CrossrefWeb of ScienceGoogle Scholar

  • Poisot, E, A. Alonso, I. González, and G. Lapidus. 2008. “Electrodeposition of a Silver-Gold Alloy (DORÉ) from Thiourea Solutions in the Presence of Other Metallic Ion Impurities.” Hydrometallurgy 93 (1–2): 23–29.CrossrefGoogle Scholar

  • Poisot, E., A. Alonso, I. González, and G. Lapidus. 2012. “Influence of Oxygen Reduction and Hydrogen Evolution in the Gold and Silver Direct Electrodeposition Process from Thiourea Solutions in a Filter Press Type Reactor.” Hydrometallurgy 129-130: 90–96.CrossrefWeb of ScienceGoogle Scholar

  • Rodríguez, M., V. Mendoza, H. Puebla, and S. Martínez. 2008. “Removal of Cr (VI) from Wastewaters at Semi-Industrial Electrochemical Reactors with Rotating Ring Electrodes.” Journal of Hazardous Materials 163 (2–3): 1221–29.Web of ScienceGoogle Scholar

  • Romeijn, H.E. 2009. “Random Search Methods.” In Encyclopedia of Optimization, edited by C.A. Floudas and P.M. Pardalos, 3245–51. US, New York: Springer.Google Scholar

  • SEMARNAP- Secretaría del Medio Ambiente. Recuros Naturales y Pesca, Paper N°. NOM-001-ECOL-1996. México, 1997.Google Scholar

  • Thirugnanasambandham, K., and K. Shine. 2018. "Investigation on the Removal of Chromium from Wastewater Using Electrocoagulation." International Journal of Chemical Reactor Engineering (Published online). DOI: .CrossrefGoogle Scholar

  • Wang, Y.P., and R. Smith. 1994. “Design of Distributed Effluent Treatment Systems.” Chemical Engineering Science 49 (18): 3127–45.CrossrefGoogle Scholar

  • Zamora-Mata, J.M., R. Hernández-Suárez, and J. Castellanos-Fernández. 2004. “Linear Programming Model to Assist the Design of Distributed Wastewater Treatment Systems (In Spanish).” Revista Mexicana De Ingeniería Química 3: 121–34.Google Scholar

  • Zongo, I., J. Leclerc, H. Maïga, J. Wéthé, and F. Lapicque. 2009. “Removal of Hexavalent Chromium from Industrial Wastewater by Electrocoagulation: A Comprehensive Comparison of Aluminium and Iron Electrodes.” Separation and Purification Technology 66 (1): 159–66.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-03-27

Accepted: 2018-06-26

Revised: 2018-06-06

Published Online: 2018-09-18


Citation Information: International Journal of Chemical Reactor Engineering, 20180076, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0076.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in