Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Ahead of print


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

An Improved Analytical Solution of Population Balance Equation Involving Aggregation and Breakage via Fibonacci and Lucas Approximation Method

Zehra Pınar
  • Department of Mathematics, Faculty of Arts and Science, Namık Kemal University, Merkez-Tekirdağ 59030, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abhishek Dutta
  • KU Leuven, Departement Materiaalkunde, Kasteelpark Arenberg 44 bus 2450, B-3001 Heverlee-Leuven, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammed Kassemi
  • National Center for Space Exploration Research (NCSER), NASA Glenn Research Center, 21000 Brookpark Road, Mailstop 110-3, Cleveland, OH 44135, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Turgut Öziş
Published Online: 2018-10-12 | DOI: https://doi.org/10.1515/ijcre-2018-0096


This study presents a novel analytical solution for the Population Balance Equation (PBE) involving particulate aggregation and breakage by making use of the appropriate solution(s) of the associated complementary equation of a nonlinear PBE via Fibonacci and Lucas Approximation Method (FLAM). In a previously related study, travelling wave solutions of the complementary equation of the PBE using Auxiliary Equation Method (AEM) with sixth order nonlinearity was taken to be analogous to the description of the dynamic behavior of the particulate processes. However, in this study, the class of auxiliary equations is extended to Fibonacci and Lucas type equations with given transformations to solve the PBE. As a proof-of-concept for the novel approach, the general case when the number of particles varies with respect to time is chosen. Three cases i. e. balanced aggregation and breakage and when either aggregation or breakage can dominate are selected and solved for their corresponding analytical solution and compared with the available analytical approaches. The solution obtained using FLAM is found to be closer to the exact solution and requiring lesser parameters compared to the AEM and thereby being a more robust and reliable framework.

Keywords: population balance; aggregation; breakage; Fibonacci and Lucas approximation


  • Abdou, M. A. 2008. “A Generalized Auxiliary Equation Method and Its Applications.” Nonlinear Dynamics 52: 95–102.Web of ScienceCrossrefGoogle Scholar

  • Alexopoulos, A. H., A. I. Roussos, and C. Kiparissides. 2004. “Part I: Dynamic evolution of the particle size distribution in particulate processes undergoing combined particle growth and aggregatio.” Chemical Engineering Science 59: 5751.CrossrefGoogle Scholar

  • Bayraktar, E., O. Mierka, and S. Turek. 2013. “Numerical Solutions of Population Balance Equations within Liquid/Gas-Liquid Flow Simulations.” Chemie Ingenieur Technik 85: 1137–45.CrossrefWeb of ScienceGoogle Scholar

  • Bleck, R. 1970. “A fast, approximative method for integrating the stochastic coalescence equation.” Journal of Geophysical Research 75: 5165.CrossrefGoogle Scholar

  • Chatzi, E. G., and C. Kiparissides. 1992. Chemical Engineering Science 47: 445.CrossrefGoogle Scholar

  • Debnath, L. 2005. Nonlinear Partial Differential Equations for Scientists and Engineers, 2nd . Boston: Birkhauser.Google Scholar

  • Doman, B. G. S., and J. K. Williams. 1981. “Fibonacci and Lucas Polynomials.” Mathematical Proceedings of the Cambridge Philosophy Social 90: 385–87.CrossrefGoogle Scholar

  • Dutta, A., D. Constales, and G. J. Heynderickx. 2012. “Applying the Direct Quadrature Method of Moments to Improve Multiphase FCC Riser Reactor Simulation.” Chemical Engineering Science 83: 93.Web of ScienceCrossrefGoogle Scholar

  • Dutta, A., D. Constales, R. Van Keer, and G. Heynderickx. 2013. “Implementation of Homotopy Perturbation Method to Solve a Population Balance Model in Fluidized Bed.” International Journal of Chemical Reactor Engineering 11 (1): 1–12.CrossrefWeb of ScienceGoogle Scholar

  • Galvez, F. J., and J. S. Dehasa. 1985. “Novel Properties of Fibonacci and Lucas Polynomials.” Mathematical Proceedings of the Cambridge Philosophical Society 91: 159–6.Google Scholar

  • Gelbard, F., and J. H. Seinfeld. 1979. “Exact solution of the general dynamic equation for aerosol growth by condensation.” Journal of Colloid and Interface Science 68: 173.CrossrefGoogle Scholar

  • Gelbard, F., and J. H. Seinfeld. 1980. “Simulation of multicomponent aerosol dynamics.” Journal of Colloid and Interface Science 78: 485.CrossrefGoogle Scholar

  • Hoggatt, V. E., Jr, and M. Bicknell. 1973. “Roots of Fibonacci Polynomials.” The Fibonacci Quarterly 11 (3): 271–74.Google Scholar

  • Horadam, A. F. 1997. “Rodrigues’ Formula for Jacobsthal-Type Polynomials.” The Fibonacci Quarterly 35 (4): 361–70.Google Scholar

  • Hounslow, M. J., R. L. Ryall, and V. R. Marshall. 1988. AIChE Journal 34: 1821.CrossrefGoogle Scholar

  • Kumar, S., and D. Ramkrishna. 1996a. “On the Solution of Population Balance Equations by Discretization-I. A Fixed Pivot Technique.” Chemical Engineering Science 51: 1311.CrossrefGoogle Scholar

  • Kumar, S., and D. Ramkrishna. 1996b. “On the solution of population balance equations by discretization-II. A moving pivot technique.” Chemical Engineering Science 51: (1333).Google Scholar

  • Lage, P. L. C. 2002. “Comments on the “An Analytical Solution to the Population Balance Equation with Coalescence and Breakage—The Special Case with Constant Number of Particles” by D.P. Patil and J.R.G. Andrews [Chemical Engineering Science 53 (3)599–601].” Chemical Engineering Science 57: 4253.CrossrefGoogle Scholar

  • Landgrebe, J. D., and S. E. Pratsinis. 1990. “A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime.” Journal of Colloid and Interface Science 139: 63.CrossrefGoogle Scholar

  • Majumder, A., V. Kariwala, S. Ansumali, and A. Rajendran. 2012. “Lattice Boltzmann Method for Multi-Dimensional Population Balance Models in Crystallization.” Chemical Engineering Science 70: 121–34.CrossrefWeb of ScienceGoogle Scholar

  • Marchal, P., R. David, J. P. Klein, and J. Villermaux. 1988. “Crystallization and precipitation engineering—I. An efficient method for solving population balance in crystallization with agglomeration.” Chemical Engineering Science 43: 59.CrossrefGoogle Scholar

  • McCoy, B. J., and G. Madras. 2003. “Analytical Solution for a Population Balance Equation with Aggregation and Fragmentation.” Chemical Engineering Science 58: 3049–51.CrossrefGoogle Scholar

  • Niño-López, L. C., and G. R. Gelves-Zambrano. 2015. “Simulating Gas-Liquid Mass Transfer in a Spin Filter Bioreactor.” Revista Facultad De Ingeniería Universidad De Antioquia 75: 163–74.Google Scholar

  • Patil, D. P., and J. R. G. Andrews. 1998. “An Analytical Solution to Continuous Population Balance Model Describing Floc Coalescence and Breakage – A Special Case.” Chemical Engineering Science 53: 599–601.CrossrefGoogle Scholar

  • Pınar, Z., A. Dutta, G. Bény, and T. Öziş. 2015a. “Analytical Solution of Population Balance Equation Involving Aggregation and Breakage in Terms of Auxiliary Equation Method.” Pramana – Journal of Physics 84: 9–21.CrossrefWeb of ScienceGoogle Scholar

  • Pınar, Z, A. Dutta, G. Bény, and T. Öziş¸. 2015b. “Analytical Solution of Population Balance Equation Involving Growth, Nucleation and Aggregation in Terms of Auxiliary Equation Method.” Applied Mathematics & Information Sciences 9: 2467–75.Google Scholar

  • Pinar, Z., and T. Özis. 2015a. “The Solutions of Nonlinear Heat Conduction Equation via Fibonacci & Lucas Approximation Method.” arXiv preprint arXiv 1511: 01787.Google Scholar

  • Pinar, Z., and T. Öziş. 2013a. “The Periodic Solutions to Kawahara Equation by Means of the Auxiliary Equation with a Sixth-Degree Nonlinear Term.” Journal of Mathematics 2013: 106349.Google Scholar

  • Pinar, Z., and T. Öziş. 2013b. “An Observation on the Periodic Solutions to Nonlinear Physical Models by Means of the Auxiliary Equation with a Sixth-Degree Nonlinear Term.” Communications in Nonlinear Science and Numerical Simulation 18: 2177–87.Web of ScienceCrossrefGoogle Scholar

  • Pınar, Z., and T. Öziş. 2015b. “Observations on the Class of “Balancing Principle” for Nonlinear PDEs that Can Be Treated by the Auxiliary Equation Method, Nonlinear Analysis.” Real World Applications 23: 9–16.CrossrefGoogle Scholar

  • Porru, M., and L. Özkan. 2017. “Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration.” Part 1: Modeling with Method of Characteristics. Industrial & Engineering Chemistry Research 56 (20): 5980–92.Google Scholar

  • Ramkrishna, D. 2000. Population Balances: Theory and Applications to Particulate Systems in Engineering. San Diego, CA: Academic Press.Google Scholar

  • Ríos-Morales, D., C. O. Castillo-Araiza, and M. G. Vizcarra-Mendoza. 2014. “Study of the Agglomeration Mechanism of a Natural Organic Solid in a Bench-Scale Wet Fluidized Bed Using Statistical Analysis and Discretized Population Balance.” Chemical Engineering Communications 201: 23–40.Web of ScienceCrossrefGoogle Scholar

  • Sastry, K. V. S., and P. Gaschignard. 1981. “Discretization Procedure for the Coalescence Equation of Particulate Process.” Industrial Engineering and Chemistry Fundamentals 20: 355.CrossrefGoogle Scholar

  • Sirendaoreji. 2007. “Auxiliary Equation Method and New Solutions of Klein–Gordon Equations.” Chaos, Solitons and Fractals 31: 943–50.CrossrefGoogle Scholar

  • Solsvik, J., P. B. Becker, N. Sheibat-Othman, I. Mohallick, R. Farzad, and H. A. Jakobsen. 2015. “Viscous Drop Breakage in Liquid–Liquid Stirred Dispersions: Population Balance Modeling.” Journal of Dispersion Science and Technology 36: 4.Web of ScienceGoogle Scholar

  • Whittaker, E. T., and G. N. Watson. 1927. A Course of Modern Analysis. Cambridge: Univ. Press, Cambridge.Google Scholar

About the article

Received: 2018-04-11

Accepted: 2018-09-26

Revised: 2018-09-26

Published Online: 2018-10-12

Citation Information: International Journal of Chemical Reactor Engineering, 20180096, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0096.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in