Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year

IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

See all formats and pricing
More options …
Ahead of print


Volume 9 (2011)

Volume 8 (2010)

Volume 7 (2009)

Volume 6 (2008)

Volume 5 (2007)

Volume 4 (2006)

Volume 3 (2005)

Volume 2 (2004)

Volume 1 (2002)

Effect of Natural and Artificial Light on Fe(III) Organic Complexes Photolysis: Case of Fe (III)-Malonate and Fe(III)-Malate

Besma Anfal Dekkiche
  • Laboratoire des Sciences et Technologies de l’Environnement, Université Frères Mentouri, Constantine 1, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nassira Seraghni
  • Laboratoire des Sciences et Technologies de l’Environnement, Université Frères Mentouri, Constantine 1, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nadra Debbache
  • Corresponding author
  • Laboratoire des Sciences et Technologies de l’Environnement, Université Frères Mentouri, Constantine 1, Algeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Imane Ghoul
  • Laboratoire des Sciences et Technologies de l’Environnement, Université Frères Mentouri, Constantine 1, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tahar Sehili
  • Laboratoire des Sciences et Technologies de l’Environnement, Université Frères Mentouri, Constantine 1, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-05 | DOI: https://doi.org/10.1515/ijcre-2018-0106


The photolysis of iron(III) organic complexes in the presence of natural and simulated light was a concern for the role it plays within the environment in terms of producing hydroxyl radicals able to degrade organic products. In the present work, the study focused on two iron(III) organic complexes. The characterization of these complexes by spectrometry allowed to show their stability in environment with a stability constant equal to Log β = 13.13 for the complex Fe(III)-malonate, and Log β = 20.85 for the Fe(III)-malate complex. Photolysis of these complexes was carried out using a lamp at 365 nm at different pHs, and followed by several assay Fe(II), H2O2 and •OH. The complexes present different photo-reactivities, in the case of Fe(III)-malate, the photolysis is favored by the Fenton process and generates hydroxyl radicals, contrarily to Fe(III)-malonate photolysis which generates an oxidizing •CH2COOH radical without formation of H2O2 nor of •OH. The presence of oxygen and the addition of isopropanol and chloroform show different effects on the complex photolysis. Complexes mineralization at natural irradiation was also studied using chemical oxygen demand (COD).

Keywords: Fe(III)-malate; Fe(III)-malonate; photolysis; sunlight


  • Abida, O. 2005. Impact des complexes de fer et de la lumière solaire sur le devenir de polluants de l’environement aquatique. France: Blaise Pascal University.Google Scholar

  • Abrahamson, H.B., A.B. Rezvani, and J.G. Brushmiller. 1994. “Photochemical and Spectroscopic Studies of Complexes of iron(III) with Citric-Acid and Other Carboxylic-Acids.” Inorganic Chimiques Acta 226: 117–27.CrossrefGoogle Scholar

  • Chebbi, A., and P. Carlier. 1996. “Carboxylic Acids in the Troposphere: Occurrence, Source and Sinks: A Review.” Atmospheric Environment 30: 4233–49.CrossrefGoogle Scholar

  • Faust, B.C., and J.M. Allen. 1993. “Aqueous-Phase Photochemical Formation of Hydroxyl Radical in Authentic Cloudwaters and Fogwaters.” Environmental Science & Technology 27: 1221–24.CrossrefGoogle Scholar

  • Faust, B.C., and R.G. Zepp. 1993. “Photochemistry of Aqueous iron(III) Polycarboxylate Complexes – Roles in the Chemistry of Atmospheric and Surface Waters.” Environmental Science & Technology 27: 2517–22.CrossrefGoogle Scholar

  • Fukushima, M., and K. Tatsumi. 1999. “Photocayalytic Reaction by iron(III)-humate Complex and Its Effect on the Removal of Of Organic Pollutant.” Toxicogical Environment Chemical 73: 103–16.CrossrefGoogle Scholar

  • Grosjean, D. 1989. “Organic Acids in Southern California Air: Ambient Concentration, Mobile Source Emissions, in Situ Formation and Removal Processes.” Environmental Science & Technology 23: 1506–14.CrossrefGoogle Scholar

  • Grosjean, D. 1990. “Formic Acid and Acetic Acid Measurements during the Southern California Air Quality Study.” Atmospheric Environment 24A: 2699–702.Google Scholar

  • Guiang, S.F., S.V. Krupa, and G.C. Pratti. 1984. “Measurements of S (IV) and Organic Anions in Minnesota Rain.” Atmospheric Environment 18: 1677–82.CrossrefGoogle Scholar

  • Gunz, D.W., and M.R. Hoffmann. 1990. “Field Investigation on the Snow Chemistry in Central and Southern California II Carbonyls and Carboxylic Acids.” Atmospheric Environment 16: 969–81.Google Scholar

  • Hartmann, W.R., M.O. Andreae, and G. Helas. 1989. “Measurements of Organic Acids over Central Germany.” Atmospheric Environment 23: 1531–33.CrossrefGoogle Scholar

  • Joseph, J.M., R. Varghese, and C.T. Aravindakumar. 2001. “Photoproduction of Hydroxyl Radicals from Fe(III)-hydroxy Complex: A Quantitative Assessment.” Journal Photochemistry Photobiology A: Chemical 146: 67–73.CrossrefGoogle Scholar

  • Kawamura, K., and K. Ikushima. 1994. “Seasonal Changes in the Distribution of Dicarboxylic Acids in the Urban Atmosphere.” Environmental Science & Technology 27: 2227–35.Google Scholar

  • Khare, P., S. Satsangi, N. Kumar, K.M. Kumari, and S.S. Srivastava. 1997. “HCHO, HCOOH and CH3COOH in Air and Rain Water at a Rural Tropical Site in North Central India.” Atmospheric Environment 31: 3867–75.CrossrefGoogle Scholar

  • Kribéche, M. E. A., H. Mechakra, T. Sehili, and S. Brosillon. 2016. “Oxidative Photodegradation of Herbicide Fenuron in Aqueous Solution by Natural Iron Oxide α-Fe2O3, Influence of Polycarboxylic Acids.” Environmental Technology 37: 172–82.Web of ScienceCrossrefGoogle Scholar

  • Kumar, N., U.C. Kulshreshta, P. Khare, A. Saxena, K.M. Kumari, and S.S. Srivastava. 1996. “Measurements of Formic and Acetic Acid Levels in the Vapor Phase at Dayalbagh, Agra, India.” Atmospheric Environment 30: 3545–50.CrossrefGoogle Scholar

  • Kumar, N., U.C. Kulshreshta, A. Saxena, K.M. Kumari, and S.S. Srivastava. 1993. “Effect of Antropogenic Activity on Formate and Acetate Levels in Precipitation at Four Sites in Agra, India.” Atmospheric Environment 27B: 87–91.Google Scholar

  • Limbeck, A., and H. Puxbaum. 1999. “Organic Acid in Continental Background Aerosols.” Atmospheric Environment 33: 1847–52.CrossrefGoogle Scholar

  • Liu, C.S., F.B. Li, X.M. Li, G. Zhang, and Y.Q. Kuang. 2006. “The Effect of Iron Oxides and Oxalate on the Photodegradation of 2-Mercaptobenzothiazole.” Journal of Molecular Catalysis A: Chemical 252: 40–48.CrossrefGoogle Scholar

  • Mameri, Y., N. Debbache, M. El Mehdi Benacherine, N. Seraghni, and T. Sehili. 2016. “Heterogeneous Photodegradation of Paracetamol Using Goethite/H2O2 and Goethite/Oxalic Acid Systems under Artificial and Natural Light.” Journal Photochemistry Photobiol A 315: 129–37.Web of ScienceCrossrefGoogle Scholar

  • Perdue, E.M., and E.T. Gjessing, 1990. “Life Sciences Research Report 48: Organic Acids in Aquatic Ecosystems.” Report on the Dehlem Workshop on Organic Acids in Aquatic Ecosystems Berlin. 1989.Google Scholar

  • Rodríguez, E. M., B. Núñez, G. Fernández, and F. J. Beltrán. 2009. “Effects of Some Carboxylic Acids on the Fe(III)/UVA Photocatalytic Oxidation of Muconic Acid in Water.” Applied Catalysis B. 89: 214–22.Web of ScienceGoogle Scholar

  • Salvadó, V., X. Ribas, V. Zelano, G. Ostacoli, and M. Valiente. 1989. “The Chemistry of Iron in biosystems-III.” Complex Formation between FeIII and Malonic Acid in Aqueous Solutions. Polyhedron 8: 813–18.Google Scholar

  • Sempéré, R., and K. Kawamura. 1996. “Low Molecular Weight Dicarboxylic Acids and Related Polar Compounds in the Remote Marine Rain Sample Collected from Western Pacific.” Atmospheric Environment 30: 1609–19.CrossrefGoogle Scholar

  • Seraghni, N. 2016. Contribution des Complexes Organiques de Fe(III) dans la Photodegradation de Polluants Organiques en Solution Aqueuse en Lumiere Naturelle et Simulee. Algeria: Universite des Freres Mentouri.Google Scholar

  • Seraghni, N., S. Belattar, Y. Mameri, N. Debbache, and T. Sehili. 2012. “Fe(III)-Citrate Complex-Induced Photooxidation of 3-Methylphenol in Aqueous Solution.” International Journal of Photoenergy DOI: .CrossrefWeb of ScienceGoogle Scholar

  • Southworth, B., and B. Voelker. 2003. “Hydroxyl Radical Production via the Photo-Fenton Reaction in the Presence of Fulvic Acid.” Environmental Science & Technology 37: 1130–36.CrossrefGoogle Scholar

  • Talbot, R.W., K.M. Beecher, R.C. Harriss, and W.R. Coffer III. 1988. “Atmospheric Geochemistry of Formic and Acetic Acids at a Mid-Latitude Temperate Site.” Journal of Geophysical Research 93: 1638–52.CrossrefGoogle Scholar

  • Talbot, R.W., J.D. Bradshaw, S.T. Sandholm, S. Smyth, D.R. Blake, N. Blake, G.W. Sachse, et al. 1996a. “Chemical Characteristics of Continental Outflow over the Tropical South Athantic Ocean from Brazil and Africa.” Journal of Geophysical Research 101: 24187–202.CrossrefGoogle Scholar

  • Talbot, R.W., J.E. Dibb, B.L. Lefer, J.D. Bradshaw, S.T. Sandholm, D.R. Blake, N.J. Blake, et al. 1997a. “Chemicalcharacteristics of Continental Outflow from Asia to the Troposphere over the Western Pacific Ocean during February-March 1994: Results from PEM-West B.” Journal of Geophysical Research 102: 28255–74.CrossrefGoogle Scholar

  • Talbot, R.W., B.W. Mosher, B.G. Heikes, D.J. Jacob, J.W. Munger, B.C. Daube, W.C. Keene, J.R. Maben, and R.S. Artz. 1995. “Carboxylic Acids in the Rural Continental Atmosphere of the Eastern United States during SCAPE.” Journal of Geophysical Research 100: 9335–43.CrossrefGoogle Scholar

  • Thurman, E.M. 1985. Organic Geochemistry of Natural Waters: Martinus Nihjoff/Dr W. Junk. Dordrechdt. 497.Google Scholar

  • Timberlake, C. F. 1964. “975. Iron–Malate and Iron–Citrate Complexes.” Journal Chemical Social: 5078–85.Google Scholar

  • Vukosav, P., V. Tomisic, and M. Mlakar. 2010. “Iron(III)-complexes Engaged in the Biochemical Processes in Seawater.” II. Voltammetry of Fe(III)–malate Complexes in Model Aqueous Solution. Electroanalysis. 22: 2179–86.Google Scholar

  • Wang, L. 2008. Photodegradation of Organic Pollutants Induced by Fe(III)-Carboxylate Complexes in Aqueous Solutions. France: Blaise Pascal University.Google Scholar

  • Wang, L., C.B. Zhang, F. Wu, N.S. Deng, E.M. Glebov, and N.M. Bazhin. 2006. “Determination of Hydroxyl Radicals from Photolysis of Fe(III)-Pyruvate Complexes in Homogeneous Aqueous Solution.” Reactions Kinetics Catalysis Letters 89: 183–92.CrossrefGoogle Scholar

  • Wang, Z.H., X. Chen, H.W. Ji, W.H. Ma, C.C. Chen, and J.C. Zhao. 2010. “Photochemical Cycling of Iron Mediated by Dicarboxylates: Special Effect of Malonate.” Environmental Science & Technology 44: 263–68.Web of ScienceCrossrefGoogle Scholar

  • Weller, C., S. Horn, and H. Herrmann. 2013. “Photolysis of Fe(III) Carboxylato Complexes: Fe(II) Quantum Yields and Reaction Mechanisms.” Journal of Photochemistry and Photobiology A 268: 24–36.CrossrefWeb of ScienceGoogle Scholar

  • Xiao, D., Y. Guo, X. Lou, C. Fang, Z. Wang, and J. Liu. 2014. “Distinct Effects of Oxalate versus Malonate on the Iron Redox Chemistry: Implications for the photo-Fenton Reaction.” Chemosphere 103: 354–58.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-04-20

Accepted: 2018-09-22

Revised: 2018-07-31

Published Online: 2018-10-05

Citation Information: International Journal of Chemical Reactor Engineering, 20180106, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0106.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in