Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Hydrodynamics Modeling of an LSCFB Reactor Using Multigene Genetic Programming Approach: Effect of Particles Size and Shape

Shaikh A. Razzak
  • Corresponding author
  • Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-29 | DOI: https://doi.org/10.1515/ijcre-2018-0116

Abstract

The multigene genetic programming (MGGP) technique based hydrodynamics models were developed to predict the solids holdups of a liquid-solid circulating fluidized bed (LSCFB) riser. Four different particles were considered to investigate the effects of particle size, shape and density on hydrodynamics behavior of the LSCFB riser. In this regard, two spherical shape glass bead particles (500 and 1200 μm), two irregular shape lava rock particles (500 and 920 μm) were employed as solid phase and water as liquid phase. The MGGP models were developed, relating the solids holdup (εs, output parameter) with eight input parameters. The developed models were first validated by comparing the model predicted and experimental data of solids holdups. The average solids holdups decreased with the increase of net superficial liquid velocity (UlUt) and normalized superficial liquid velocityUlUt. Uniform axial solids holdups observed in axial locations (H) except close to the liquid-solid distributor of the riser. The radial non-uniformity of solids holdup observed all radial positions (r/R). In the central region almost flat but increased toward the wall region. The radial profiles of the solid holdup are approximately identical at a fixed average cross-sectional solid holdup for all of the three LSCFB systems of this study. The statistical performance indicators such as the mean absolute percentage error and correlation coefficient are also found to be within acceptable range. All these findings of suggest that the MGGP modeling approach is suitable for predicting effect of particle size and shape on hydrodynamics behavior of the LSCFB system

Keywords: hydrodynamics; solids holdup; genetic programming; terminal settling velocity; net superficial liquid velocity; normalized superficial liquid velocity

References

  • Atta, A., S. A. Razzak, K. D. P. Nigam, and J-X. Zhu. 2009. “(Gas)-Liquid-Solid Circulating Fluidized Bed Reactors: Characteristics and Applications.” Industrial Engineering and Chemistry Research 48 (17): 7876–92.Web of ScienceCrossrefGoogle Scholar

  • Azamathulla, H., A. Ghani, and N. Zakaria. 2009. “Genetic Programming to Predict Bridge Pier Scour.” Journal of Hydraulic Engineering 136 (3): 165–69.Web of ScienceGoogle Scholar

  • Babu, B. V., and S. Karthik. 2007. “Genetic Programming for Symbolic Regression of Chemical Process Systems.” Engineering Letters 14 (2): 42–51.Google Scholar

  • Castelli, M., L. Trujillo, L. Vanneschi, and A. Popovič. 2015. “Prediction of Energy Performance of Residential Buildings: A Genetic Programming Approach.” Energy and Buildings 102: 67–74.Web of ScienceCrossrefGoogle Scholar

  • Clift, R., J. R. Grace, and M. E. Weber. 1978. Bubbles, Drops, and Particles. New York: Academic Press.Google Scholar

  • Enríquez-Zárate, J., L. Trujillo, S. de Lara, L. Muñoz, and A. Popovič. 2017. “Automatic Modeling of a Gas Turbine Using Genetic Programming: An Experimental Study.” Application of Soft Computing Journal 50: 212–22.CrossrefGoogle Scholar

  • Fang, Y., and J. Li. 2010. “A Review of Tournament Selection in Genetic Programming, in Advances in Computation and Intelligence,” 5th International Symposium, ISICA Wuhan, China.Google Scholar

  • Felice, R. D. 1995. “Hydrodynamics of Liquid Fluidisation.” Chemical Engineering Science 50 (8): 1213–45.CrossrefGoogle Scholar

  • Garg, A., K. Tai, and A. Savalani. 2014. “Formulation of Bead Width Model of an SLM Prototype Using Modified Multi-Gene Genetic Programming Approach.” The International Journal of Advanced Manufacturing Technology 73 (1–4): 375–88.CrossrefWeb of ScienceGoogle Scholar

  • Gusel, L., and M. Brezocnik. 2011. “Application of Genetic Programming for Modelling of Material Characteristics.” Expert Systems with Applications 38 (12): 15014–19.Web of ScienceCrossrefGoogle Scholar

  • Haider, A., and O. Levenspiel. 1989. “Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles.” Powder Technology 58 (1): 63–70.CrossrefGoogle Scholar

  • Hakimzadeh, H., V. Nourani, and A. B. Amini. 2013. “Genetic Programming Simulation of Dam Breach Hydrograph and Peak Outflow Discharge.” Journal of Hydrologic Engineering 19 (4): 757–68.Web of ScienceGoogle Scholar

  • Jiang, F., Z Pengli, Guopeng Qi, N. Li, Y. Biana, H. Li, T. Jiang, X. Li, and C. Yua. 2018. “Pressure Drop in Horizontal Multi-Tube Liquid–Solid Circulatingfluidized Bed.” Powder Technology 333 (15): 60–70.CrossrefGoogle Scholar

  • Kovačič, M., and F. Dolenc. 2016. “Prediction of the Natural Gas Consumption in Chemical Processing Facilities with Genetic Programming.” Genetic Programming and Evolvable Machines 17 (3): 231–49.CrossrefWeb of ScienceGoogle Scholar

  • Koza, J. R., H. B. Bennett, and D. Andre. 1999. Genetic Programming III: Darwinian Invention and Problem Solving. Burlington, MA: Morgan Kaufmann Publishers.Google Scholar

  • Lahiri, S. K., and K. C. Ghanta. 2008. “Development of an Artificial Neural Network Correlation for Prediction of Hold-Up of Slurry Transport in Pipelines.” Chemical Engineering Science 63 (6): 1497–509.Web of ScienceCrossrefGoogle Scholar

  • Liang, W.-G., Y. Zhang, J.–X. Zhu, Y. Jin, and Z–W Wang. 1996. “Radial Non Uniformity of Flow Structure in a Liquid-Solid Circulating Fluidized Bed.” Chemical Engineering Science 77: 2001–10.Google Scholar

  • McKay, B., M. Willis, and G. Barton. 1997. “Steady-State Modelling of Chemical Process Systems Using Genetic Programming.” Computers & Chemical Engineering 21 (9): 981–96.CrossrefGoogle Scholar

  • Ravandi, E. G., R. Rahmannejad, A. E. F. Monfared, and E. G. Ravandid. 2013. “Application of Numerical Modeling and Genetic Programming to Estimate Rock Mass Modulus of Deformation.” International Journal of Mining Science and Technology 23 (5): 733–37.CrossrefGoogle Scholar

  • Razzak, S. A. 2012. “Hydrodynamics Modeling of an LSCFB Riser Using ANFIS Methodology: Effects of Particle Shape and Size.” Chemical Engineering Journal 195–196: 49–61.Web of ScienceGoogle Scholar

  • Razzak, S. A. 2013. “Applications of Feed-Forward Neural Network to Study Irregular Shape Particle Effects on Hydrodynamics Behavior in a Liquid-Solid Circulating Fluidized Bed Riser.” International Journal of Chemical Reactor Engineering 11 (1): 443–52.Web of ScienceGoogle Scholar

  • Razzak, S. A., K. Agarwal, J. X. (Jesse) Zhu, and C. Zhang. 2008. “Numerical Investigation on the Hydrodynamics of an LSCFB Riser.” Powder Technology 188 (1): 42–51,.Web of ScienceCrossrefGoogle Scholar

  • Razzak, S. A., S. Barghi, and J-X. Zhu. 2010. “Effects on Particle Shape, Density and Diameter on Distribution of Phase Holdups in a GLSCFB Riser.” Industrial Engineering and Chemistry Research 49: 6998–7007.CrossrefGoogle Scholar

  • Razzak, S. A., S. Barghi, J-X. Zhu, and Y. Mi. 2009. “Phase Holdup Measurement in a Gas–Liquid–Solid Circulating Fluidized Bed (GLSCFB) Riser Using Electrical Resistance Tomography and Optical Fibre Probe.” Chemical Engineering Journal 147: 210–18.Web of ScienceCrossrefGoogle Scholar

  • Razzak, S. A., S. A. Hossain, S. M. Rahman, M. M. Hossain, and J. Zhu. 2018. “A Multigene Genetic Programming Approach for Modeling Effect of Particle Size in A Liquid–Solid Circulating Fluidized Bed Reactor.” Chemical Engineering Researcher and Design 134: 370–81.CrossrefGoogle Scholar

  • Razzak, S. A., S. M. Rahman, and M. M. Hossain. 2015. “Effects of Particle Size and Shape on Solids Holdups Distributions in a LSCFB Reactor Modeling Using Abductive Network.” Canadian Journal of Chemical Engineering 93 (9): 1686–92.CrossrefGoogle Scholar

  • Razzak, S. A., S. M. Rahman, M. M. Hossain, and J. Zhu. 2012a. “Investigation of Artificial Neural Network Methodology for Modeling of a Liquid-Solid Circulating Fluidized Bed Riser.” Powder Technology 229: 71–77.CrossrefWeb of ScienceGoogle Scholar

  • Razzak, S. A., S. M Rahman, M. M. Hossain, and J. Zhu. 2012b. “Artificial Neural Network and Neuro-Fuzzy Methodology for Phase Distributions Modeling of a Liquid-Solid Circulating Fluidized Bed Riser.” Industrial & Engineering Chemical Research 51 (38): 12497–508.Google Scholar

  • Zheng, Y., and J-X. Zhu. 2000. “Overall Pressure Balance and System Stability in a Liquid–Solid Circulating Fluidized Bed.” Chemical Engineering Journal 79: 145–53.CrossrefGoogle Scholar

  • Zheng, Y., J-X Zhu, N. S. Marwaha, and A. S. Bassi. 2002. “Radial Solids Flow Structure in a Liquid–Solids Circulating Fluidized Bed.” Chemical Engineering Journal 88 (1–3): 141–50.CrossrefGoogle Scholar

  • Zhou, Y., Q. Shi, Z. Huang, J. Wang, and Y. Yang. 2016. “Effects of Liquid Action Mechanisms on Hydrodynamics in Liquid-Containing Gas–Solid Fluidized Bed Reactor.” Chemical Engineering Journal 285 (1): 121–27.Web of ScienceCrossrefGoogle Scholar

  • Zhu, J-X., Y. Zheng, D. G. Karamanev, and A. S. Bassi. 2000. “(Gas-) Liquid-Solid Circulating Fluidized Beds and Their Potential Applications to Bioreactor Engineering.” Canadian Journal of Chemical Engineering 78: 82–94.CrossrefGoogle Scholar

About the article

Received: 2018-05-09

Revised: 2018-09-19

Accepted: 2018-09-23

Published Online: 2018-09-29


Citation Information: International Journal of Chemical Reactor Engineering, 20180116, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0116.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in