Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Chemical Reactor Engineering

Ed. by de Lasa, Hugo / Xu, Charles Chunbao

12 Issues per year


IMPACT FACTOR 2017: 0.881
5-year IMPACT FACTOR: 0.908

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.306
Source Normalized Impact per Paper (SNIP) 2017: 0.503

Online
ISSN
1542-6580
See all formats and pricing
More options …

Three- Dimensional Hydromagnetic Convective Flow of Chemically Reactive Williamson Fluid with Non-Uniform Heat Absorption and Generation

S. Geethan Kumar / S. V. K. Varma / R. V. M. S. S. Kiran Kumar / C.S.K. Raju / S. A. Shehzad / M.N. Bashir
Published Online: 2018-09-25 | DOI: https://doi.org/10.1515/ijcre-2018-0118

Abstract

The electrically conducting three-dimensional Williamson fluid flow produced by the movement of sheet via porous medium under non-uniform heat sink and source, thermal radiation and convective boundary condition is examined. The system of nonlinear expressions is transformed into nonlinear ordinary differential system of equations. These governing expressions are evaluated numerically with the help of boundary value problem default solver in MATLAB bvp4c package. Pertinent results are demonstrated graphically to execute the effects of various governing parameters on dimensionless fields. The aspects of constraints on skin-friction, mass and heat transport rates are characterized via numerical benchmarks. It is noticed that the transverse and axial velocities are depreciated by respective Williamson fluid parameters, while the opposite trend is noticed on concentration and temperature fields.

Keywords: three-dimensional flow; convective boundary condition; MHD; Williamson fluid; non-uniform heat source sink

References

  • Abel, M.S., N. Mahesha, and S.B. Malipatil. 2010. “Heat Transfer Due to MHD Slip Flow of a Second-Grade Liquid over a Stretching Sheet through a Porous Medium with Non-Uniform Heat Source/Sink.” Chemical Engineering Communications 198: 191–213.CrossrefGoogle Scholar

  • Ali, N., A. Abbasi, and I. Ahmad. 2015. “Channel Flow of Ellis Fluid Due to Peristalsis.” AIP Advances 5: 1–9.Web of ScienceGoogle Scholar

  • Ariel, P.D. 2003. “Generalized Three-Dimensional Flow Due to a Stretching Sheet.” Zeitschrift fur Angewandte Mathematik und Mechanik 83: 844–52.CrossrefGoogle Scholar

  • Boger, D.V. 1977. “Demonstration of Upper and Lower Newtonian Fluid Behaviour in a Pseudo Plastic Fluid.” Nature 265: 126–28.CrossrefGoogle Scholar

  • Chhabra, R.P., and J.F. Richardson. 2008. Non-Newtonian Flow and Applied Rheology: Engineering Application, 2nd ed. Butterworth-Heinemann: Burlington.Google Scholar

  • Chu, J.C., K.C. Burridge, and F. Brown. 1954. “The Viscosity of Pseudo-Plastic Fluids.” Chemical Engineering Science Genie Chimique 3: 229–47.CrossrefGoogle Scholar

  • Dorier, C., and J. Tichy. 1992. “Behaviour of a Bingham-Like Viscous Fluid in Lubrication Flows.” Journal of Non- Newtonian Fluid Mechanics 45: 291–310.CrossrefGoogle Scholar

  • Ellahi1, R., A. Riaz, and S. Nadeem. 2013. “Three Dimensional Peristaltic Flow of Williamson Fluid in a Rectangular Duct.” Indian Journal of Physics 87: 1275–81.CrossrefWeb of ScienceGoogle Scholar

  • Gireeshaa, B.J., K.G. Kumar, G.K. Ramesh, and B.C. Prasannakumara. 2018. “Nonlinear Convective Heat and Mass Transfer of Oldroyd-B Nanofluid over a Stretching Sheet in the Presence of Uniform Heat Source/Sink.” Results in Physics 9: 1555–63.CrossrefWeb of ScienceGoogle Scholar

  • Hayat, T., S. Asad, and A. Alsaedi. 2016. “Non-Uniform Heat Source/Sink and Thermal Radiation Effects on the Stretched Flow of Cylinder in a Thermally Stratified Medium.” Journal of Applied Fluid Mechanics 10: 915–24.Web of ScienceGoogle Scholar

  • Hayat, T., U. Khalid, and M. Qasim. 2012. “Steady Flow of a Williamson Fluid past a Porous Plate.” Asia-Pacific Journal of Chemical Engineering 7: 302–06.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., A. Shafiq, and A. Alsaedi. 2016. “Hydromagnetic Boundary Layer Flow of Williamson Fluid in the Presence of Thermal Radiation and Ohmic Dissipation.” Alexandria Engineering Journal 55: 2229–40.Web of ScienceCrossrefGoogle Scholar

  • Hayat, T., I. Ullah, T. Muhammad, A. Alsaedi, and S.A. Shehzad. 2016. “Three-Dimensional Flow of Powell-Eyring Nanofluid with Heat and Mass Flux Boundary Conditions.” Chinese Journal of Physics 25: 1–9.Google Scholar

  • Hsiao, K. 2010. “Viscoelastic Fluid over a Stretching Sheet with Electromagnetic Effects and Non-Uniform Heat Source/Sink.” Mathematical Problems in Engineering 2010: 1–14.Google Scholar

  • Hsiao, K. 2017. “Combined Electrical MHD Heat Transfer Thermal Extrusion System Using Maxwell Fluid with Radiative and Viscous Dissipation Effects.” Applied Thermal Engineering 112: 1281–88.CrossrefWeb of ScienceGoogle Scholar

  • Khan, N.A., and H. Khan. 2014. “A Boundary Layer Flows of non-Newtonian Williamson Fluid.” Nonlinear Engineering 3: 107–15.Google Scholar

  • Kiran Kumar, R.V.M.S.S., C.S.K. Raju, B. Mahanthesh, B.J. Gireesha, and S.V.K. Varma. 2017. “Chemical Reaction Effects on Nano Carreau Liquid Flow past a Cone and a Wedge with Cattaneo-Christov Heat Flux Model.” International Journal of Chemical Reactor Engineering 16: 1–18.Web of ScienceGoogle Scholar

  • Krishnamurthy, M.R., B.C. Prasannakumara, B.J. Gireesha, and R.S.R. Gorla. 2016. “Effect of Chemical Reaction on MHD Boundary Layer Flow and Melting Heat Transfer of Williamson Nanofluid in Porous Medium.” Engineering Science and Technology, an International Journal 19: 53–61.Web of ScienceCrossrefGoogle Scholar

  • Kumar, K.G., B.J. Gireesha, B.C. Prasannakumara, and O.D. Makinde. 2017a. “Impact of Chemical Reaction on Marangoni Boundary Layer Flow of a Casson Nano Liquid in the Presence of Uniform Heat Source Sink.” Diffusion Foundations 11: 22–32.CrossrefGoogle Scholar

  • Kumar, K.G., R. Haq, N.G. Rudraswamy, and B.J. Gireesha. 2017b. “Effects of Mass Transfer on MHD Three Dimensional Flow of a Prandtl Liquid over a Flat Plate in the Presence of Chemical Reaction.” Results in Physics 7: 3465–71.CrossrefWeb of ScienceGoogle Scholar

  • Kumar, K.G., N.G. Rudraswamy, B.J. Gireesha, and S. Manjunatha. 2017c. “Non Linear Thermal Radiation Effect on Williamson Fluid with Particle-Liquid Suspension past a Stretching Surface.” Results in Physics 7: 3196–202.CrossrefWeb of ScienceGoogle Scholar

  • Li, J., L. Zheng, and L. Liu. 2016. “MHD Viscoelastic Flow and Heat Transfer over a Vertical Stretching Sheet with Cattaneo-Christov Heat Flux Effects.” Journal of Molecular Liquids 221: 19–25.CrossrefWeb of ScienceGoogle Scholar

  • Malik, M. Y., M. Bibi, F. Khan, and T. Salahuddin. 2016. “Numerical Solution of Williamson Fluid Flow past a Stretching Cylinder and Heat Transfer with Variable Thermal Conductivity and Heat Generation/Absorption.” AIP Advances 6: 1–13.Web of ScienceGoogle Scholar

  • Malik, M. Y., S. Bilal, T. Salahuddin, and K.U. Rehman. 2017. “Three-Dimensional Williamson Fluid Flow over a Linear Stretching Surface.” Mathematical Sciences Letters 6: 53–61.CrossrefGoogle Scholar

  • Mamatha, S.U., C.S.K. Raju, G. Madhavi, and Mahesha. 2017. “Unsteady 3D MHD Carreau and Casson Fluids over a Stretching Sheet with Non-Uniform Heat Source/Sink.” Chemical and Process Engineering Research 52: 1–14.Google Scholar

  • Nadeem, S., and N.S. Akbar. 2011. “Numerical Solutions of Peristaltic Flow of Williamson Fluid with Radially Varying MHD in an Endoscope.” International Journal for Numerical Methods in Fluids 66: 212–20.CrossrefWeb of ScienceGoogle Scholar

  • Nadeem, S., R.U. Haq, N.S. Akbar, and Z.H. Khan. 2013. “MHD Three-Dimensional Casson Fluid Flow past a Porous Linearly Stretching Sheet.” Alexandria Engineering Journal 52: 577–82.CrossrefGoogle Scholar

  • Nadeem, S., and S.T. Hussain. 2014. “Flow and Heat Transfer Analysis of Williamson Nanofluid.” Applied Nanoscience 4: 1005–12.CrossrefWeb of ScienceGoogle Scholar

  • Nagendramma, V., A. Leelarathnam, C. S. K. Raju, S. A. Shehzad, and T. Hussain. 2018a. “Doubly Stratified MHD Tangent Hyperbolic Nanofluid Flow Due to Permeable Stretched Cylinder.” Results in Physics 9: 23–32.CrossrefWeb of ScienceGoogle Scholar

  • Nagendramma, V., C. S. K. Raju, B. Mallikarjuna, S. A. Shehzad, and A. Leelarathnam. 2018b. “3D Casson Nanofluid Flow over Slendering Surface in a Suspension of Gyrotactic Microorganisms with Cattaneo-Christov Heat Flux.” Applied Mathematics and Mechanics 39: 623–38.Web of ScienceCrossrefGoogle Scholar

  • Prasad, P.D., C. S. K. Raju, S. V. K. Varma, S. A. Shehzad, and A. G. Madaki. 2018. “Cross Diffusion and Multiple Slips on MHD Carreau Fluid in a Suspension of Microorganisms over a Variable Thickness Sheet.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 40: 1–13.Web of ScienceGoogle Scholar

  • Ramesh, G.K., A.J. Chamkha, and B.J. Gireesha. 2013. “MHD Mixed Convection Flow of a Viscoelastic Fluid over an Inclined Surface with a Non Uniform Heat Source/Sink.” Canadian Journal of Physics 91: 1074–80.CrossrefGoogle Scholar

  • Reddy, M.G., M.V.V.N.L.S. Rani, K.G. Kumar, and B.C. Prasannakumara. 2018. “Cattaneo-Christov Heat Flux and Non-Uniform Heat-Source/Sink Impacts on Radiative Oldroyd-B Two-Phase Flow across a Cone/Wedge.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 95: 1–21.Web of ScienceGoogle Scholar

  • Srivastava, V.P., and M. Saxena. 1995. “A Two-Fluid Model of non-Newtonian Blood Flow Induced by Peristaltic Waves.” Rheologica Acta 34: 406–14.CrossrefGoogle Scholar

  • Thammanna, G.T., K.G. Kumar, B.J. Gireesha, G.K. Ramesh, and B.C. Prasannakumara. 2017. “Three Dimensional MHD Flow of Couple Stress Casson Fluid past an Unsteady Stretching Surface with Chemical Reaction.” Results in Physics 7: 4104–10.CrossrefWeb of ScienceGoogle Scholar

  • Williamson, R.V. 1929. “The Flow of Pseudoplastic Materials.” Industrial & Engineering Chemistry Research 21: 1108–11.CrossrefGoogle Scholar

  • Zehra, I., M.M. Yousaf, and S. Nadeem. 2015. “Numerical Solutions of Williamson Fluid with Pressure Dependent Viscosity.” Results in Physics 5: 20–25.Web of ScienceCrossrefGoogle Scholar

  • Zhao, J., L. Zheng, X. Zhang, and F. Liu. 2016. “Convection Heat and Mass Transfer of Fractional MHD Maxwell Fluid in a Porous Medium with Soret and Dufour Effects.” International Journal of Heat and Mass Transfer 103: 203–10.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-05-15

Accepted: 2018-09-15

Revised: 2018-07-15

Published Online: 2018-09-25


Citation Information: International Journal of Chemical Reactor Engineering, 20180118, ISSN (Online) 1542-6580, DOI: https://doi.org/10.1515/ijcre-2018-0118.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in